Press "Enter" to skip to content

3758 search results for "Fi"

医疗景观人工智能模型列表(2023年)

鉴于人工智能(AI)在今年取得的许多进展,AI已成为2023年的一个重要讨论点并不足为奇。现在,几乎在每个领域中都可以找到AI的应用案例,其中之一就是在医疗保健和医学领域的令人兴奋和有用的应用。从药物发现到转录医学文件,甚至协助手术,它正在改变医疗专业人员的生活,还有助于减少错误并提高其效率。本文讨论了2023年几个有可能改变医学界的AI模型。 Med-PaLM 2 Med-PaLM由Google Research设计用于医学领域,能够对医学问题提供高质量的答案。该模型利用了Google的LLM的强大性能,并是其中一个在回答USMLE样式问题时达到人类专家水平的首个模型。在评估时,该模型展示了理解症状、进行复杂推理并选择适当治疗的能力。此外,它在研究中基于MedQA医学考试基准测试中取得了86.5%的准确率。尽管显示出了有前途的能力,研究人员希望进行更严格的评估,以确保该模型可以在关键安全领域部署。 Bioformer Bioformer是BERT的一个紧凑版本,可用于生物医学文本挖掘。虽然BERT在NLP应用中取得了最先进的性能,但通过减少参数可以提高计算效率,对性能的影响很小。Bioformer研究人员采用这种方法开发了一个模型,其模型尺寸比BERT大大减小(减少60%)。该模型是在PubMed摘要和PubMed Central全文文章上训练的,并使用了生物医学词汇表。研究人员发布了两个版本的模型-Bioformer8L和Bioformer16L,在命名实体识别、关系抽取、问题回答和文档分类等参数评估中表现良好,即使参数更少。 MedLM MedLM是由Google开发的一套针对医疗保健用例进行调优的基础模型。MedLM中的两个模型旨在处理复杂任务并扩展到各种任务中。这些模型的主要目的是自动化任务,以节省时间,提高效率并改善患者整体健康状况,Google的研究人员与德勤合作以试行MedLM的能力。MedLM还与其他AI系统集成,如BenchSci的ASCEND,以提高临床研究和开发的质量和速度。 RoseTTAFold RoseTTAFold是一款通过有限信息预测蛋白质结构的深度学习软件。它能够研究蛋白质序列的模式、蛋白质氨基酸的相互作用以及它们的三维结构。该模型使研究人员能够模拟蛋白质和小分子药物彼此之间的相互作用,促进药物发现研究。该模型的研究人员还公开了其代码,以造福整个社区。 AlphaFold AlphaFold是由DeepMind开发的功能强大的AI模型,可以根据蛋白质的氨基酸序列预测其三维结构。DeepMind与EMBL的欧洲生物信息研究所(EMBL-EBI)合作共同发布了一个包含超过2亿个AI生成的蛋白质结构预测结果的数据库,以促进科学研究。在CASP14中,AlphaFold在高准确性的情况下超过了其他模型,产生了令人满意的结果。此外,它具有更好地帮助研究人员理解蛋白质结构和推进生物研究的潜力。 ChatGLM-6B ChatGLM是一个双语模型(中英文),它在中文医疗对话数据库上进行了精细调整。该模型在相对较短的时间内(13小时)进行了精细调整,使其成为非常实惠且适用于医疗目的的LLM。该模型还具有更长的序列长度,因此支持更长的对话和应用程序。该模型使用了监督式精细调整、RLHF等技术进行训练,从而使其能够更好地理解人类指令。因此,该模型具有出色的对话和问答能力。 本文最初发表在MarkTechPost上,文章标题为:医疗领域人工智能模型清单(2023年)。

Leave a Comment

斯坦福大学研究人员利用GLOW和IVES进行深度学习,改变了分子对接和配体结合姿势预测的方式

深度学习有潜力通过改进评分函数来增强分子对接。当前的采样协议通常需要先验信息以生成准确的配体结合位姿,这限制了评分函数的准确性。斯坦福大学的研究人员开发的两个新协议,GLOW和IVES,解决了这个挑战,展示了增强位姿采样效果的能力。通过在包括AlphaFold生成的蛋白质结构在内的各种蛋白质结构上进行基准测试,验证了这些方法。 深度学习在分子对接中通常依赖于刚性蛋白质对接数据集,忽视了蛋白质的柔性。虽然柔性对接考虑了蛋白质的柔性,但准确性较低。GLOW和IVES是解决这些局限性的高级采样协议,持续优于基准方法,尤其在动态结合口袋中。这对于提高蛋白质-配体对接中的配体位姿采样至关重要,同时也对于提高基于深度学习的评分函数的准确性至关重要。 分子对接预测在药物发现中至关重要,它可以预测配体在蛋白质结合位点的位置。传统方法在生成准确的配体位姿方面面临挑战。深度学习可以提高准确性,但依赖于有效的位姿采样。GLOW和IVES为挑战性的情景提供了改进的采样协议,提高了准确性。适用于无配体或预测蛋白质结构,包括AlphaFold生成的结构,它们提供了精选的数据集和开源Python代码。 GLOW和IVES是分子对接中的两个配体位姿采样协议。GLOW使用软化的范德华势生成配体位姿,而IVES通过合并多个蛋白质构象来提高准确性。与基准方法的性能比较表明GLOW和IVES的优越性。在交叉对接案例中,通过测试集评估正确位姿的百分比。对于有效的IVES来说,种子位姿质量至关重要,SMINA对接评分和用于选择的评分也很关键。 GLOW和IVES在准确采样配体位姿方面优于基准方法,在具有明显蛋白质构象变化的挑战性情景和AlphaFold基准测试中表现出色。对测试集的评估确认了它们正确采样的姿态的可能性更大。IVES通过生成多个蛋白质构象,在几个构象数上达到了与Schrodinger IFD-MD相媲美的几何深度学习性能。由GLOW和IVES生成的5000个蛋白质-配体对的配体位姿数据集提供了宝贵的资源,有助于开发和评估分子对接中基于深度学习的评分函数。 https://arxiv.org/abs/2312.00191 总之,GLOW和IVES是两种功能强大的位姿采样方法,相比基本技术,特别是在困难情景和AlphaFold基准测试中更加有效。IVES可以生成多个蛋白质构象,这对于几何深度学习非常有优势。此外,GLOW和IVES提供的数据集包含5000个蛋白质-配体对的配体位姿,是分子对接中基于深度学习的评分函数的研究人员的宝贵资源。

Leave a Comment

如何使用Github?逐步指南

在GitHub上注册的六个步骤 步骤 1:注册GitHub账号 访问他们的网站并点击注册按钮。 填写相关信息,包括您的用户名、电子邮件和密码。 完成后,验证您的电子邮件,您将拥有一个免费的GitHub账号,可用于代码存储库和协作。 https://docs.github.com/en/get-started/quickstart/hello-world 步骤 2:在GitHub上创建一个代码库 在GitHub上创建一个代码库 要为您的项目创建GitHub代码库,请按照以下简单的步骤进行: 1. 在任何GitHub页面的右上角点击“+”符号,然后选择“新建代码库”。 2. 在“代码库名称”框中为您的代码库命名。 3. 在“描述”框中添加简短的描述。 4. 选择您的代码库是公开还是私人。 5. 选中“添加README文件”的选项。 6. 点击“创建代码库”按钮。 此代码库可以用于组织和存储文件、与他人进行协作,并在GitHub上展示您的项目。 https://docs.github.com/en/get-started/quickstart/hello-world…

Leave a Comment

NTU研究人员发布尊尚视频:先导性的文本引导潜隐扩散技术,提升视频超分辨率

视频超分辨率旨在将低质量视频提升到高保真度,面临的挑战是解决现实世界场景中常见的多样化且复杂的退化问题。与以前关注合成或特定相机相关退化不同,该复杂性源于多个未知因素,如降采样、噪声、模糊、闪烁和视频压缩。虽然最近的基于CNN的模型在缓解这些问题方面显示出了希望,但由于有限的生成能力,它们在生成逼真纹理方面仍然存在局限性,导致过度平滑。本研究探讨了利用扩散模型来解决这些限制并增强视频超分辨率的方法。 现实世界视频增强的复杂性要求采用超越传统方法的解决方案,以应对多方面的退化问题。尽管基于CNN的模型在缓解多种退化形式方面展示出实力,但它们的局限性在于生成逼真纹理,往往导致过度平滑的输出结果。扩散模型已成为一个希望的象征,在生成高质量图像和视频方面展示出令人印象深刻的能力。然而,将这些模型应用于视频超分辨率仍然是一个艰巨的挑战,原因是扩散采样中存在固有的随机性,导致低级纹理的时间不连续性和闪烁。 为了应对这些挑战,本研究中的NTU研究人员采用了潜在扩散框架内的局部-全局时间一致性策略。在局部层面上,预训练的放大模型通过额外的时间层进行微调,整合了3D卷积和时间注意力层。这种微调显著提高了局部序列的结构稳定性,减少了纹理闪烁等问题。同时,一个新颖的流引导的循环潜在传播模块在全局层面上操作,通过逐帧传播和推断期间的潜在融合,确保了更长视频的整体稳定性。 图1:AI生成和现实世界视频的超分辨率对比。建议的Upscale-A-Video展示了出色的放大性能。通过使用正确的文本提示,它以更多的视觉逼真度和更精细的细节呈现惊人的效果。 本研究探索了创新的方向,通过引入文本提示来指导纹理生成,使模型能够产生更加逼真和高质量的细节。此外,将噪声注入输入可以增强模型对于重度或未知退化的鲁棒性,从而在恢复和生成之间实现控制。较低的噪声水平优先考虑恢复能力,而较高的噪声水平则鼓励更精细的细节生成,实现保真度和质量之间的权衡。 主要贡献在于制定了一种强大的实际视频超分辨率方法,将局部-全局时间策略结合到隐藏扩散框架中。通过整合时间一致性机制和对噪声水平和文本提示的创新控制,模型在基准测试上表现出卓越的视觉逼真度和时间连贯性,展示出了最新技术水平。

Leave a Comment

这篇AI论文介绍了一种突破性的方法,利用多视角视频对建模3D场景动态进行建模

NVFi致力于解决理解和预测3D场景在时间上演变的复杂挑战,这对增强现实、游戏和电影制作等应用至关重要。虽然人类轻而易举地理解此类场景的物理学和几何学,但现有的计算模型难以从多视点视频中明确学习这些属性。核心问题在于现有方法(包括神经辐射场及其衍生品)不能根据学习到的物理规律提取和预测未来的运动。 NVFi的雄心是通过纯粹从多视点视频帧中派生出的分解速度场,来填补这一差距,这在以前的框架中尚未研究过。 3D场景的动态性给计算带来了深远的挑战。虽然神经辐射场的最新进展在插值观察时间范围内的视图方面表现出了非凡的能力,但它们无法学习到显式的物理特征,如物体速度。这种限制阻碍了它们准确预测未来运动模式的能力。目前的研究将物理学与神经表示结合起来,在重建场景几何、外观、速度和黏度场方面表现出了希望。然而,这些学习的物理属性通常与特定场景元素交织在一起,或者需要补充的前景分割掩码,限制了它们在场景之间的可转移性。 NVFi的开创性目标是解开和理解整个3D场景内的速度场,进一步扩展训练观察之外的预测能力。 香港理工大学的研究人员引入了一个全面的框架NVFi,包括三个基本组成部分。首先,关键帧动态辐射场促进了对3D空间中每个点的时间相关体积密度和外观的学习。其次,帧间速度场捕获了每个点的时间相关3D速度。最后,由物理知识约束增强的关键帧和帧间元素的联合优化策略组织了训练过程。该框架采用现有的时间相关NeRF架构进行动态辐射场建模时具有灵活性,同时使用相对简单的神经网络(如MLP)进行速度场建模。其核心创新在于第三个组件,联合优化策略和特定的损失函数使得无需额外的物体特定信息或掩码,能够精确学习到分解速度场。 NVFi的创新之处在于它能够纯粹从多视角视频帧中对3D场景的动态进行建模,消除了对特定对象数据或掩码的需求。它精心关注于分解速度场,这是掌控场景运动动力学的关键,它为众多应用提供了关键。在多个数据集上,NVFi展示了它在推断未来帧、语义场景分解和不同场景之间速度传递方面的能力。这些实验验证证实了NVFi在各种实际应用场景中的适应性和优越性能表现。 主要贡献和要点: 引入NVFi,一种新颖的从多视角视频中建模动态3D场景的框架,无需先验对象信息。 设计和实现了一个神经速度场,并结合联合优化策略进行有效的网络训练。 成功展示了NVFi在各种数据集上的能力,展示了在未来帧预测、语义场景分解和场景间速度传递方面的优越性能。

Leave a Comment

安全转换与ChatGPT插件的互动指南

介绍 曾经是静态内容的领域,现在通过ChatGPT插件的注入,ChatGPT正在经历一场革命性的转变。这些插件就像是虚拟的钥匙,解锁了数字故事讲述的未知领域,重塑了用户参与度。在本指南中,我们将踏上探索ChatGPT插件无缝整合到博客世界的旅程,揭示它们在培养创造力、建立社区和应对不断发展的领域中的潜力。 学习目标 了解启用和安装ChatGPT插件的步骤,增强语言模型的功能。 了解如何验证ChatGPT插件的激活状态,并监控其性能,以实现无缝的用户体验。 探索将ChatGPT插件集成到应用程序中的简化指南,包括获取API密钥和安装必要的软件包。 检查在医疗、金融和制造业等实际应用中,展示ChatGPT插件对效率和决策的影响。 本文作为 数据科学博文马拉松的一部分发表。 <p进入chatgpt插件的世界,就像为你的对话工具箱增加了个人化的触感一样。这些模块化扩展作为伴侣,让用户能够自定义交互并实现特定的博客目标。这不仅仅是关于生成内容,而是为你的受众创造独特而动态的体验。 ChatGPT插件的变革性作用 <p深入探究chatgpt插件的变革性作用揭示了它们对用户参与度的深远影响。尽管chatgpt以其独立形式提供了令人印象深刻的自然语言处理能力,但插件通过引入专门的功能,提升了用户体验。这些功能包括触发式回复、上下文感知的交互和通过外部api实时检索信息。 <p这个变革性动态标志着从静态对话模型到多功能适应性工具的演变,为用户在与chatgpt交互和利用中开启了新的维度。随着我们深入了解这些插件的具体内容,它们重塑对话人工智能领域的潜力变得越来越明显。 插件影响的导航 <p我们的探索密切研究了这些多功能工具的深远意义和稳定性。我们深入探讨了chatgpt插件的重要性,探索其在塑造和丰富用户交互中的关键作用。 <p本节详细研究了chatgpt插件的稳定性,提供了关于它们在chatgpt框架内的可靠性和稳定性的见解。通过导航这些插件的影响,我们旨在全面了解它们的重要性以及在各种对话场景中的稳定性。 了解限制和技术 <p让我们深入了解实际情况。稳定性和限制性是重要的考虑因素。这些插件在更广泛的chatgpt框架内是如何操作的呢?这是关于理解细微差别、优化体验和做出明智决策的问题。你可以同时使用多少个插件?让我们探索有效自定义的实际考虑因素。 <p引人入胜的是gpt-4对chatgpt插件的影响。作为基础模型的下一个迭代版本,gpt-4的进步对插件的能力和性能产生影响。本研究提供了对chatgpt插件不断发展的领域的一瞥,展示了技术发展如何塑造它们的功能。 <p通过全面了解这些限制和技术细节,用户可以在chatgpt插件的领域中做出明智决策并优化使用。 安全和监控 <p安全至关重要。我们深入研究了与chatgpt插件相关的安全考虑,解决了关注点,并制定了安全交互措施。常见的关于安全的问题以直接的faq形式进行了回答,提供了明确的解释,并建立了对安全使用的信心。 <p以chatgpt插件安全为重点的常见问题解答(faqs)。这些常见问题解答涵盖了用户关于在chatgpt体验中整合插件的安全性和可靠性方面的疑问。这些常见问题解答为寻求关于安全方面的澄清的用户提供了宝贵的资源。 <p这个逐步验证指南赋予用户确认插件功能的能力,确保它们积极地参与到对话中。通过强调安全考虑并提供有效监控工具,本节为用户提供了在chatgpt插件世界中安全而自信地导航所需的知识。 费用、访问和安装 提升您的博客体验需要一定的费用支出。用户友好的逐步安装指南确保了较低的技术门槛,使技术水平有限的用户也能轻松使用。了解财务方面和插件集成的实际步骤,使用户能够做出明智的决策。了解使用ChatGPT插件所涉及的成本是至关重要的。当将这些插件整合到ChatGPT体验中时,用户可以清楚地了解潜在费用。这样的理解有助于与个人需求和预算相匹配选择正确的插件。…

Leave a Comment

这篇人工智能论文揭示了DeWave:用一种新的人工智能框架革新了EEG到文本翻译,为开放词汇BCI提供了革命性的方法

悉尼科技大学(UTS)GrapheneX-UTS人本人工智能中心的研究人员已经开发出一种令人瞩目的系统,能够解码无声思维并将其转化为书面文字。这项技术在帮助那些因中风或瘫痪等情况而无法说话的人进行交流,并促进人与机器之间的改进互动方面具有潜在的应用。 在新奥尔良的NeurIPS会议上作为焦点论文展示的研究团队介绍了一种便携式和非侵入性的系统。GrapheneX-UTS HAI中心的团队与悉尼科技大学工程与信息技术学院的成员合作,开发了一种将脑电信号转化为可理解文字内容的方法,而无需进行侵入性手术。 在研究过程中,参与者戴着一顶装有电极的专用帽子,通过脑电图(EEG)记录脑部活动。捕获到的脑电图数据使用名为DeWave的AI模型进行处理,该模型由研究人员开发,将这些脑电信号转化为可理解的单词和句子。 研究人员强调了这种创新在将原始脑电波直接转化为语言上的重要性,突出了离散编码技术在脑到文字翻译过程中的整合。这种方法在神经科学和人工智能领域开辟了新的可能性。 与以往需要侵入性手术如脑植入物或核磁共振成像机使用的技术不同,该团队的系统提供了一种非侵入性和实用的替代方案。重要的是,它不依赖于眼动跟踪,使其在日常使用中更具适应性。 该研究涉及29名参与者,相比过去仅限于一两个个体的研究,确保了更高水平的鲁棒性和适应性。虽然使用帽子收集脑电信号会引入噪声,但研究报告显示在脑电翻译方面表现出色,超过了先前的基准。 团队强调了该模型在匹配动词而非名词方面的熟练程度。然而,在解析名词时,系统显示出倾向于同义词对而不是完全翻译的趋势。研究人员解释说,在处理单词时,语义上相似的词可能会引发类似的脑电波模式。 目前的翻译准确性,以BLEU-1分数衡量,约为40%。研究人员的目标是将这个得分提高到与传统语言翻译或语音识别程序相媲美的水平,这些程序通常可以达到约90%的准确性水平。 这项研究基于UTS在脑机接口技术方面的先前进展,表明它对于改变之前受到身体限制影响的个体的交流途径有着巨大的潜力。 这项研究的发现为将思维无缝转化为文字提供了希望,为面对交流障碍的个体提供了力量,并促进了更好的人机交互。

Leave a Comment

在金融科技API管理中释放人工智能的力量:产品经理的全面指南

这份全面的指南探索了人工智能在金融技术API管理中的改变性作用,并为每个部分提供了实际示例从由人工智能驱动的洞察力和异常检测到由人工智能增强的设计、测试、安全性和个性化用户体验,金融科技产品经理必须利用人工智能的能力来优化运营、提升安全性并提供最佳的用户体验

Leave a Comment

使用Amazon DocumentDB在Amazon SageMaker Canvas中构建无代码机器学习解决方案

我们很高兴地宣布亚马逊文档数据库(兼容MongoDB)与亚马逊SageMaker Canvas的集成正式发布,这使得亚马逊文档数据库的客户可以在不编写代码的情况下构建和使用生成型人工智能和机器学习(ML)解决方案亚马逊文档数据库是一个完全托管的本地JSON文档数据库,使操作关键业务变得简单且具有成本效益

Leave a Comment

微软人工智能团队推出Phi-2:一个具有杰出推理和语言理解能力的2.7B参数小语言模型

语言模型的发展一直以来都是在大模型能够拥有更高性能的前提下进行的。然而,打破这一既定信念,微软研究院的机器学习基础团队的研究人员推出了参数为27亿的全新语言模型Phi-2,这一模型正颠覆着长期主导这一领域的传统扩展规则,挑战了“模型大小决定语言处理能力”的普遍观念。 这项研究打破了关于超卓性能必须依赖更大模型的普遍假设。研究人员将Phi-2引入视为范式转变,超越常规。文章揭示了Phi-2的独特特点以及其开发中采用的创新方法。Phi-2摒弃常规方法,依赖精心策划的高质量训练数据,并利用较小模型的知识传递,对语言模型扩展的既定规则构成了巨大挑战。 Phi-2方法的核心在于两项关键性发现。首先,研究人员强调了训练数据质量的重要作用,使用“教科书级”数据精心设计,使模型获得推理、知识和常识的能力。其次,采用创新技术实现了模型洞察力的高效扩展,从13亿参数的Phi-1.5开始。文章深入探讨了Phi-2的架构,这是一个基于Transformer的模型,以下一个单词预测为目标,在合成和网络数据集上进行训练。令人惊讶的是,尽管规模较小,Phi-2在各种基准测试中超越了更大的模型,突显了其高效性和出色能力。 总之,来自微软研究院的研究人员将Phi-2推崇为语言模型发展中的一股变革力量。这一模型不仅挑战了,而且成功推翻了业界对模型能力与大小本质相关的长期信念。这种范式转变鼓励了新的视角和研究方向,强调了不完全遵循常规扩展规则时所能实现的高效性。Phi-2独特的高质量训练数据和创新的扩展技术,标志着自然语言处理迈向前沿,并为未来带来了新的可能性和更安全的语言模型。 本文首发于Microsoft AI团队推出Phi-2:一个参数为27亿的小型语言模型,展示出卓越的推理和语言理解能力,转载请注明出处。

Leave a Comment

如何使用开源工具像专业人士一样克隆声音和视频口型同步

介绍 AI语音克隆风靡社交媒体。它开启了创造性的无限可能。你肯定在社交媒体上看过名人梗或AI语音配音。你想知道它是如何完成的吗?当然,许多平台提供像Eleven Labs这样的API,但我们能否免费使用开源软件来实现呢?答案是肯定的。开源界有TTS模型和嘴唇同步工具,用于实现语音合成。因此,在本文中,我们将探索用于语音克隆和嘴唇同步的开源工具和模型。 学习目标 探索用于AI语音克隆和嘴唇同步的开源工具。 使用FFmpeg和Whisper转录视频。 使用Coqui-AI的xTTS模型进行语音克隆。 使用Wav2Lip进行视频嘴唇同步。 探索该技术的实际用例。 本文作为 数据科学博客马拉松 中的一部分发表。 开源栈 正如你已经了解的,我们将使用OpenAI的 Whisper,FFmpeg,Coqui-ai的xTTS模型和Wav2lip作为我们的技术栈。但在深入代码之前,让我们简要讨论一下这些工具。同时感谢这些项目的作者。 Whisper:Whisper是OpenAI的自动语音识别(ASR)模型。它是一个使用超过650k小时的各种音频数据和相应转录进行训练的编码器-解码器变压器模型。这使其在多语言转录方面非常强大。 编码器接收音频段的对数梅尔频谱图,每个编码器块使用自注意力机制来理解音频信号的不同部分。解码器然后接收编码器的隐藏状态信息和学习的位置编码。解码器使用自注意力机制和跨注意力机制预测下一个标记。最终,它输出代表识别文本的一系列标记。有关Whisper的更多信息,请参考官方存储库。 Coqui TTS:TTS是Coqui-ai的开源库。它包含多个文本到语音模型。它具有端到端模型,如Bark、Tortoise和xTTS,频谱图模型如Glow-TTS、FastSpeech等,以及声码器如Hifi-GAN、MelGAN等。此外,它提供了一个统一的API用于推断、微调和训练文本到语音模型。在这个项目中,我们将使用xTTS,一个端到端的多语言语音克隆模型。它支持16种语言,包括英语、日语、印地语、普通话等。有关TTS的更多信息,请参考官方TTS存储库。 Wav2Lip:Wav2Lip是一个用于“A Lip Sync Expert Is All You Need for…

Leave a Comment

Can't find what you're looking for? Try refining your search: