Press "Enter" to skip to content

Tag: security

在金融科技API管理中释放人工智能的力量:产品经理的全面指南

这份全面的指南探索了人工智能在金融技术API管理中的改变性作用,并为每个部分提供了实际示例从由人工智能驱动的洞察力和异常检测到由人工智能增强的设计、测试、安全性和个性化用户体验,金融科技产品经理必须利用人工智能的能力来优化运营、提升安全性并提供最佳的用户体验

Leave a Comment

令人震惊的现实:ChatGPT对数据泄露的脆弱性

最近一份名为“从ChatGPT中提取训练数据”的研究论文揭示了一项重大发现,这个广泛应用的语言模型存在一个令人震惊的漏洞。研究团队的调查显示,仅需两百美元就可以提取数兆字节的ChatGPT训练数据,揭示了一次前所未有的数据泄露。 研究强调,像ChatGPT这样的自然语言理解模型是通过从公共互联网获取的数据进行训练的。该论文揭示了一种攻击方法,可以通过查询模型来提取其所接受训练的精确数据。令人震惊的是,研究人员估计,通过进一步的财务投资,可能可以提取高达一千兆字节的ChatGPT训练数据集。 这次数据泄露具有重大意义,因为它针对的是一个“对齐”的生产模型,旨在避免披露大量的训练数据。然而,研究人员表明,通过一种开发的攻击方法,可以迫使模型披露其大量的训练数据。 训练数据提取攻击及其对你的重要性 揭示这一发现的研究团队多年来一直致力于“训练数据提取”项目。当ChatGPT这样的机器学习模型保留其训练数据的随机方面时,就会发生训练数据提取,使其容易受到攻击。这篇论文首次揭示了一个对一个已上线的对齐模型——ChatGPT的训练数据提取攻击。在图片中,您可以看到电子邮件和联系信息是被分享的。 这个漏洞的影响是深远的,尤其是对那些拥有敏感或原始数据的人士而言。除了数据泄露的担忧,该论文还强调了模型记忆和重复训练数据的风险,这对依赖创新性的产品来说是一个关键因素。 从ChatGPT中提取数据 这项研究提供了成功从ChatGPT提取训练数据的证据,即使该模型只能通过聊天API进行访问,并且可能已经对抗数据提取进行了对齐。该攻击发现了一个绕过隐私保护的漏洞,使ChatGPT脱离了其微调对齐并恢复到其预训练数据。 研究团队强调,ChatGPT的对齐隐藏了记忆功能,当受到特定攻击时,数据输出的频率显著增加。尽管外表看起来不是这样,但该模型的记忆能力是传统攻击的150倍。 对测试和红队模型的影响 该论文提出了对ChatGPT广泛使用的担忧,该模型已经产生了超过十亿人小时的交互作用。然而,数据输出的高频率仍然未被注意到。语言模型中的潜在漏洞,以及区分表面上安全和真正安全模型之间的挑战,都存在重大挑战。 现有的记忆测试技术无法揭示ChatGPT的记忆能力,因为对齐步骤对其进行了隐藏。这凸显了需要增强的测试方法来确保语言模型的安全性。 还可阅读: 导航隐私问题:ChatGPT用户的聊天标题泄露解释 我们的观点 揭示ChatGPT对数据泄露的漏洞,凸显了对机器学习模型的演变中的安全性分析的重要性。需要进一步的研究来确保这些系统的安全性。在当今技术驱动的时代,ChatGPT对数据泄露的敏感性提醒了保护先进语言模型面临的挑战。

Leave a Comment