Press "Enter" to skip to content

Tag: NLP

构建功能强大的聊天助手,无需OpenAI密钥,适用于PDF和文章

介绍 自然语言处理领域正在迅速扩张,特别是随着大型语言模型的诞生,它们彻底改变了这个领域并使其对每个人都可访问。在本文中,我们将探索并实现一些NLP技术,创建一个功能强大的聊天助手,可以根据给定的文章(或PDF)使用开源库回答您的问题,而无需OpenAI API密钥。 本文作为数据科学博文马拉松的一部分发表。 工作流程 应用程序的工作流程如下所示: 用户提供一个PDF文件或文章的URL,提出一个问题,应用程序将根据提供的来源尝试回答问题。 我们将使用PYPDF2库(对于PDF文件)或BeautifulSoup库(对于文章URL)提取内容。然后,我们将使用langchain库的CharacterTextSplitter将其分成块。 对于每个块,我们使用all-MiniLM-L6-v2模型计算其对应的词嵌入向量,将句子和段落映射到384维的稠密向量空间(词嵌入只是将单词/句子表示为向量的技术),并且相同的技术应用于用户的问题。 这些向量作为输入传递给由<sentence_transformers 提供的语义搜索函数,该函数是用于最先进的句子、文本和图像嵌入的Python框架。</sentence_transformers  该函数将返回可能包含答案的文本块,然后问答模型将基于语义搜索和用户问题的输出生成最终答案。 注意 所有提到的模型都可以通过API访问,只需使用HTTP请求即可。 代码将使用Python编写。 FAQ-QN是一个关键词,表示您应该查看常见问题解答部分,特别是第N个问题,以获取更多详情。 实现 在本节中,我将只关注实现部分,详细信息将在常见问题解答部分提供。 依赖项 我们首先下载依赖项,然后导入它们。 pip install -r requirements.txt import torch…

Leave a Comment

在自然语言处理中探索除了GAN和VAE之外的扩散模型

介绍 扩散模型近年来引起了广泛关注,尤其在自然语言处理(NLP)领域。基于通过数据传播噪声的概念,这些模型在各种NLP任务中展现出了显著的能力。在本文中,我们将深入研究扩散模型,了解它们的基本原理,并探讨实际应用、优势、计算考虑因素、扩散模型在多模态数据处理中的相关性、预训练扩散模型的可用性以及挑战。我们还将通过代码示例展示它们在实际场景中的有效性。 学习目标 理解扩散模型在随机过程中的理论基础以及噪声在数据优化中的作用。 掌握扩散模型的架构,包括扩散和生成过程,以及它们如何迭代改善数据质量。 掌握使用PyTorch等深度学习框架实现扩散模型的实际知识。 本文是数据科学博客马拉松的一部分。 理解扩散模型 研究人员将扩散模型根植于随机过程理论,并设计它们通过迭代优化噪声数据来捕捉潜在的数据分布。关键思想是从输入数据的噪声版本开始,并逐步改进它们,就像扩散一样,信息逐渐传播到一个VoAGI中。 该模型通过在每个步骤中引入和消除噪声,迭代地将数据转化为接近真实潜在数据分布的过程。它可以被看作是一个类似于扩散的过程,其中信息逐渐在数据中传播。 在扩散模型中,通常有两个主要过程: 扩散过程:该过程通过添加噪声对数据进行迭代优化。在每个步骤中,将噪声引入数据,使其变得更加嘈杂。然后,模型旨在逐渐减少这种噪声,以逼近真实的数据分布。 生成过程:在数据经过扩散过程后,应用生成过程。该过程根据改进后的分布生成新的数据样本,有效地产生高质量的样本。 下图突出显示了不同生成模型工作方式的差异。 不同生成模型的工作方式:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 理论基础 1. 随机过程: 扩散模型建立在随机过程的基础上。随机过程是描述随机变量随时间或空间演化的数学概念。它以概率的方式模拟系统随时间的变化。在扩散模型的情况下,该过程涉及迭代优化数据。 2. 噪声: 扩散模型的核心概念是噪声。噪声指的是数据中的随机变异或不确定性。在扩散模型的上下文中,引入噪声到输入数据中,创建数据的噪声版本。 这里的噪声指的是粒子位置的随机波动。它代表了测量中的不确定性或扩散过程本身的固有随机性。噪声可以建模为从分布中采样的随机变量。在简单的扩散过程中,通常将其建模为高斯噪声。 3. 马尔可夫链蒙特卡洛(MCMC):…

Leave a Comment

生成式人工智能的偏见缓解

介绍 在当今世界中,生成式人工智能推动了创造力的边界,使机器能够创作出类似人类的内容。然而,在这种创新中存在一个挑战——AI生成的输出中存在偏见。本文深入探讨了“生成式人工智能中的偏见缓解”。我们将探讨各种偏见,从文化到性别,了解它们可能产生的现实影响。我们的旅程包括检测和缓解偏见的高级策略,如对抗训练和多样化训练数据。加入我们,揭开生成式人工智能中偏见缓解的复杂性,发现我们如何创建更加公平可靠的人工智能系统。 来源:Lexis 学习目标 理解生成式人工智能中的偏见:我们将探讨偏见在人工智能中的含义,以及为什么它在生成式人工智能中是一个真正的关注点,通过实际例子来说明其影响。 伦理和实际影响:深入研究人工智能偏见的伦理和现实后果,从不平等的医疗保健到对人工智能系统的信任问题。 生成式人工智能中的偏见类型:了解不同形式的偏见,如选择偏见和群体思维偏见,以及它们在人工智能生成内容中的表现方式。 偏见缓解技术:发现对抗训练和数据增强等先进方法,以应对生成式人工智能中的偏见。 案例研究:探索IBM的Project Debater和Google的BERT模型等实际案例,了解偏见缓解技术的有效应用。 挑战和未来方向:了解偏见缓解中的持续挑战,从不断变化的偏见形式到伦理困境,以及解决这些问题的未来方向。 本文作为数据科学博客马拉松的一部分发表。 理解生成式人工智能中的偏见 偏见,一个我们都熟悉的术语,在生成式人工智能中展现出新的维度。在本质上,人工智能中的偏见指的是AI模型生成的内容中可能出现的不公平或偏斜的观点。 本文将剖析这个概念,探讨它在生成式人工智能中的表现方式以及为什么它是一个如此重要的关注点。我们将避免使用术语,深入研究实际例子,以了解偏见对人工智能生成内容的影响。 代码片段理解生成式人工智能中的偏见 这是一个基本的代码片段,可以帮助理解生成式人工智能中的偏见: # 用于说明生成式人工智能中偏见的示例代码 import random # 定义一个求职者数据集 applicants =…

Leave a Comment

Llama 2:深入探究ChatGPT的开源挑战者

“能够进行复杂推理任务的大型语言模型(LLMs)在编程和创意写作等专业领域显示出潜力然而,LLMs的世界并不仅仅是一个即插即用的天堂;在可用性、安全性和计算需求方面存在一些挑战在本文中,我们将深入探讨Llama 2的能力,同时提供一个[…]”

Leave a Comment

使用spaCy增强NLP流程

介绍 spaCy是一款用于自然语言处理(NLP)的Python库。spaCy的NLP流水线是免费且开源的。开发者可以使用它来创建信息提取和自然语言理解系统,就像Cython一样。它具有简洁且用户友好的API,适用于生产环境。 如果你经常处理大量文本,你会想要了解更多关于它的信息。例如,它是关于什么的?在什么上下文中这些术语的含义是什么?对谁进行了什么操作?提到了哪些企业和产品?哪些文本可以相互比较? spaCy专为生产环境使用,可以帮助您开发处理大量文本的应用程序,并“理解”这些文本。它可用于创建信息提取、自然语言解释和深度学习的预处理文本系统。 学习目标 了解spaCy的基础知识,如分词、词性标注和命名实体识别。 了解spaCy的文本处理架构,它高效且快速,适用于大规模的NLP任务。 在spaCy中,您可以探索NLP流水线,并为特定任务创建定制的流水线。 探索spaCy的高级功能,包括基于规则的匹配、句法分析和实体链接。 了解在spaCy中可用的许多预训练语言模型以及如何在各种NLP应用中使用它们。 使用spaCy学习命名实体识别(NER)策略,以识别和分类文本中的实体。 本文是Data Science Blogathon的一部分。 统计模型 spaCy的某些特性可以自主运行,而其他特性则需要加载统计模型。这些模型使spaCy能够预测语言注释,例如确定一个词是动词还是名词。目前,spaCy提供了多种语言的统计模型,您可以将它们作为独立的Python模块进行安装。它们通常包括以下元素: 为了在上下文中预测这些注释,为词性标注器、依赖解析器和命名实体识别器分配二进制权重。 词汇表中的词条是词和它们的上下文无关特性,例如形式或拼写。 数据文件包括词形还原规则和查找表。 词向量是单词的多维意义表示,允许您确定它们的相似程度。 在加载模型时,使用配置选项,如语言和处理流水线设置,将spaCy置于适当的状态。 要导入模型,只需运行spacy.load(‘model_name’),如下所示: !python -m spacy…

Leave a Comment

谷歌开拓者的激励之旅

介绍 在不断发展的科技巨头领域中,总是涌现出许多胜利和成就的故事,展示了那些敢于梦想并为之不懈努力的人们的非凡旅程。在这些故事的核心是谷歌的一位副校长,他的成功故事是对科技行业奉献、创新和无限机遇的见证。本文深入探讨了曼尼·加拉帕蒂先生的非凡旅程,他是一位在谷歌开辟道路的先锋,从平凡的开始走到了关键人物,他的贡献不仅提升了自己的职业生涯,还在技术领域和其他领域留下了深刻的印记。 AV:您能告诉我们一下您的教育背景以及它是如何使您达到在谷歌的副校长职位的吗? 曼尼先生:我在比尔德科技学院获得了技术金融的学士和硕士学位,这为我打下了坚实的技术和金融基础,这可能有助于我在科技行业的后续角色中取得成功。 我在JP摩根大通、Mu Sigma、TCS创新实验室和沃尔玛实验室的经历使我在包括银行业、物联网、车载导航、文本分析、社交媒体分析、网站分析、自然语言处理、定价、供应链、全球采购和人力资源分析等各个领域积累了专业知识。 这些多样化的经验可能磨砺了我的问题解决和分析能力,以及在团队中工作和适应不同环境的能力。 我在谷歌的现任副校长职位涉及在技术领域中监督和管理大规模滥用和欺诈检测项目。我在各个领域的先前经验使我具备处理这一职位复杂性并为团队的成功做出贡献所需的技能。 总的来说,我的教育背景和职业经验对我在谷歌的副校长职位的成功做出了贡献,并继续塑造着我在科技行业的职业道路。 成长概述 我决心在科技和金融领域取得成功。我在比尔德科技学院就读,并在五年内完成了技术金融的学士和硕士学位。 毕业后,我加入了JP摩根大通,并在银行领域的商业智能和自动化方面迅速获得了技能。一年后,我加入了Mu Sigma。我花了两年的时间开发物联网、车载导航和文本分析解决方案,从而推出了MuRx和MMx等多个算法产品。 接下来,我来到了TCS创新实验室,在电信领域深入研究了社交媒体分析、网站分析和自然语言处理。之后,我转到了沃尔玛实验室,在零售领域从事了四年的定价、供应链、全球采购和人力资源分析工作。 在积累了多年的经验后,我加入了谷歌,并开始从事技术领域的大规模滥用和欺诈检测工作。在过去的四年里,我已经证明自己是谷歌团队的重要成员,并帮助创建了一个更安全、更可靠的在线环境。 通过努力工作、奉献和对学习的热情,这个人在科技行业中开辟了一条成功的职业道路,并成为了备受尊敬和宝贵的技术行业成员。 AV:是什么激励您追求数据科学的职业,并且您是如何开始的? 曼尼先生:最初,我探索了不同的职业道路,包括iOS开发、网页设计和知识流程外包,但我发现它们并不能让我感到满足。然而,我偶然接触到了数据科学,并发现它是一个与我产生共鸣的领域。 我对数据科学的兴趣源于对探索和理解数据的好奇心,以及利用数据来指导决策和推动商业价值的愿望。我被使用统计和机器学习技术从大型和复杂数据集中提取洞察,并创建基于数据的解决方案解决现实问题的潜力所吸引。 当我加入Mu Sigma时,我有机会在不同领域的各种数据科学项目上工作,这使我能够获得实践经验并建立扎实的数据科学技能基础。我学习了数据预处理、统计建模、机器学习和数据可视化等各种技术,并接触到了Python、R、SQL和Tableau等工具和技术。 我在Mu Sigma的经历很可能帮助我对数据科学领域有了更深入的理解,并让我有机会与优秀的数据科学家合作并向他们学习。这段经历很可能改变了我的职业轨迹,给予我了我所追求的方向和目标。 总的来说,好奇心、对数据的兴趣、解决现实世界问题的能力以及通过在Mu Sigma的经历中接触到这个领域,这些因素是激发我追求数据科学职业的关键因素。…

Leave a Comment

用双向LSTM掌握下一个单词预测:全面指南

介绍 识别下一个单词是下一个单词预测的任务,也被称为语言建模。自然语言处理的基准任务之一就是语言建模。在其最基本的形式中,它涉及根据给定的一串词语选择最有可能出现的下一个单词。语言建模在许多不同领域都有各种各样的应用。 学习目标 认识统计分析、机器学习和数据科学中使用的各种模型背后的思想和原则。 学习如何创建预测模型,包括回归、分类、聚类等,以根据数据生成精确的预测和类型。 了解过拟合和欠拟合的原理,并学习如何使用准确率、精确度、召回率等指标评估模型性能。 学习如何预处理数据并确定建模的相关特征。 学习如何使用网格搜索和交叉验证调整超参数并优化模型。 本文作为数据科学博客马拉松的一部分发布。 语言建模的应用 以下是一些值得注意的语言建模应用: 手机键盘文本推荐 智能手机键盘上的一个功能称为手机键盘文本推荐,或者预测文本或自动建议,在您输入时建议单词或短语。它旨在加快输入速度,减少错误,并提供更准确和与上下文相关的建议。 也可阅读:构建基于内容的推荐系统 谷歌搜索自动完成 每次我们使用谷歌等搜索引擎搜索任何内容时,我们会得到许多想法,随着我们不断添加短语,推荐会变得越来越好,与当前搜索更相关。那么,这是如何实现的呢? 自然语言处理(NLP)技术使其成为可能。在这里,我们将使用自然语言处理(NLP)来创建一个预测模型,利用双向LSTM(长短期记忆)模型来预测句子的剩余部分。 了解更多:什么是LSTM?长短期记忆简介 导入必要的库和包 最好导入构建下一个单词预测模型所需的必要库和包。下面是你通常需要的一些库的示例: import pandas as pd import…

Leave a Comment