“数据流”听起来非常复杂,“数据流水线”更是如此在我们讨论它的意义并被术语所束缚之前,让我们从原因开始……
Leave a CommentTag: Data Science
“以物换物和以货换货是我们日常生活中复杂的一部分同样,各个国家之间也会参与不同类型的贸易关系…
Leave a Comment理查德·费曼(Richard Feynman)是一位著名的物理学家,曾经说过:“我可以毫不夸张地说,没有人真正理解量子力学”在他的采访《与理查德·费曼一同想象》中,他谈到了…
Leave a Comment介绍 在教育和机器学习的不断发展中,适应性学习通过扩散的整合代表了一种范式转变。这种先进的方法利用了扩散的原理来量身定制学习经验,无缝地适应个体学习者的需求和学习节奏。在本文中,我们将深入探讨适应性学习通过扩散的细微差别,探索其潜在概念,应用于不同领域以及对学习者和教育工作者的转变性影响。 学习目标 了解在教育和机器学习背景下,适应性学习通过扩散的核心原理。 探索适应性学习架构的关键组成部分,包括学习者模型、辅导模型和知识领域。 深入了解适应性学习通过扩散在不同领域中的实际应用,如教育科技、企业培训和医疗教育。 获取有关实现动态内容扩散、个性化学习路径和实时反馈扩散的高级代码段的知识。 认识到适应性学习通过扩散对学习者和教育工作者的转变性影响,包括在赋予学习者力量和提高教育效率方面的作用。 本文是作为数据科学博文马拉松的一部分发表的。 理解适应性学习通过扩散 适应性学习通过扩散的核心是在教育模型中思考扩散过程的应用。扩散,作为物理和数学的基本概念,描述了物质或信息通过VoAGI的传播。在教育领域中,这意味着智能地传播和吸收知识,根据每个人独特的学习轨迹进行调整。 适应性学习架构 学习者模型 适应性学习架构的核心是学习者模型。这个动态实体捕捉到学习者的独特属性,包括熟练水平、现有知识、指定的学习目标和偏好的学习风格。学习者模型充当了一个个性化的蓝图,通过每次互动的演变和适应提供一个精心调整的学习体验。 现有知识、指定的目标、学习风格 现有知识:学习者已经掌握的内容被包含在学习者模型中。通过评估先前的知识,系统避免了冗余,并调整内容以弥补现有的差距。 指定的目标:学习者被分配的学习目标是另一个重要方面。这些目标作为标准,指导适应性系统筛选与学习者特定教育目标相符的内容。 学习风格:了解学习者最好吸收信息的方式很重要。学习风格包括视觉、听觉、动觉等偏好。适应性学习架构利用这些信息以优化适合个体学习偏好的内容发送方式。 辅导模型 辅导模型是负责内容适应的智能核心。它利用从学习者模型中得出的见解来动态调整教育内容的难度、节奏和格式。该模型使用复杂的算法确保学习材料与学习者当前的熟练水平和学习风格相契合,促进更有效的学习体验。 知识领域 知识领域涵盖了可供学习的全部主题。它作为Tutoring模型从中提取内容的广泛库存。适应性学习架构确保从知识领域中选取的内容与学习者的目标相符,优化教育过程。 输出给学习者 适应性学习架构的最终输出是为个体学习者量身定制的学习体验。这个输出包括量身定制的课程、评估和反馈,旨在最大限度地提高学习者对材料的理解和保持。适应性系统根据实时交互和学习者不断变化的需求对这个输出进行不断改进。 从本质上讲,适应性学习架构将教育转变为一个动态、个性化和反应灵敏的过程。通过交织学习者模型、现有知识、指定的目标、学习风格、辅导模型、知识领域和输出给学习者,这个架构为更有效和引人入胜的学习旅程铺平了道路。…
Leave a Comment使用Python探索地理空间准确性,了解在精确地理空间分析中球面和2D Voronoi图的区别
Leave a Comment上面的图像表示了普通最小二乘法(OLS)或线性回归(在经典统计学中可以互换使用)的几何解释让我们分解一下我们所看到的内容…
Leave a Comment数据科学的世界非常复杂,隐藏着超出预算限制的隐藏成本数据科学家对于任何组织都是一项重大投资然而,不幸的是,像闲置等效率低下的问题…
Leave a Comment当目标变量受多个信息源的影响时,理解每个信息源对所提供的整体信息的贡献是至关重要(但并不是琐碎的)在这个…
Leave a Comment在我的下一个《娱乐数据科学的未来研究》文章中,我提到了数据科学如何可以应用于内容生命周期的各个阶段,包括从立项到制作的过程中…
Leave a Comment这是关于幂律和Fat Tails的系列文章的第三篇在之前的文章中,我们探讨了如何从经验数据中检测幂律虽然这种技术很方便,但是Fat Tails的概念也要进一步理解…
Leave a Comment介绍 工程研究生入学考试(GATE)是印度的一个入学考试,用于攻读研究生。这个考试主要测试工程和科学的本科学科的综合理解能力。如果你准备参加由IISc Bangalore推出的2024年GATE数据科学和人工智能考试,那么你来对地方了。本文是一个宝库 – 学习资料、讲义以及标准教材 – 它们将成为你在这个新颖而激动人心的GATE科目中的指南。 你准备的主要科目包括概率和统计、线性代数、机器学习、人工智能等等。这些不仅仅是任何学科,它们是数据科学和人工智能巨大建筑的支柱。我即将介绍的资源来源于IISc Bangalore的教授们的经典之作,都经过了检验和推荐。 概率和统计:机会和数据的游戏 在概率和统计方面,要准备迎接挑战。这个科目在GATE数据科学和人工智能考试中占有重要的分量,相比计算机科学与工程专业的课程,涵盖了更多的主题。要战胜这个强大的科目,你需要准备适合的参考书籍。我建议首先学习 Sheldon Ross 的《概率课程入门》,这是本本科学生必备的教材。一旦你掌握了基础,可以继续学习同一作者的《概率模型入门》。 对于那些渴望更进一步的知识的人,可以深入学习 S.C. Port 和 C.J. Stone 的《概率论入门》,然后是《随机过程入门》。这些书将带你深入了解随机建模和理论概率。 在讲座视频方面,MIT在概率和统计方面的课程无与伦比。无论你喜欢综合性的旧播放列表还是新的分支主题视频,他们都可以满足你的需求。别忘了检查probabilitycourse.com,那里有大量与GATE课程内容完美契合的例子和练习。 线性代数:数据科学的基石 线性代数是另一个需要重视的科目。GATE课程中新增了向量空间和奇异值分解等新主题,你不能浮于表面。要打好基础,你可以通过MIT的YouTube频道观看 Gilbert…
Leave a Comment在这一期的《数据引领》中,我们将特别介绍Favio Vazquez,他是一位从物理学家转变为计算机工程师和数据科学家的人。拥有物理学硕士学位和对宇宙学产生浓厚兴趣的Favio,不仅为H2O.ai公司带来了超过200万美元的新业务,还在拉丁美洲地区取得了20多个客户的成就。让我们一起探索Favio的旅程,揭示在物理学、计算以及数据科学的交叉点上的深刻洞见。 您可以在Spotify、Google Podcasts和Apple等热门平台上收听《数据引领》的这一期。选择您最喜欢的平台,享受有洞察力的内容吧! Favio Vazquez与我们的对话中的关键见解 对于那些有科学计算背景的人来说,转向数据科学通常是出乎意料的,但也是值得的。 数据科学职业需要在技术专长和商业头脑之间保持平衡,强调实际经验。 生成式人工智能将改变数据科学的未来,但机器学习的基础仍然重要。 数据科学家必须优先学习并了解行业趋势,以保持竞争力和创新力。 加入我们即将举行的《数据引领》会议,与AI和数据科学领域的领导者进行深入讨论! 现在,让我们看一下Favio Vazquez在会议中提出的问题以及他的回答! 您的数据科学之旅是如何开始的? 我进入数据科学的旅程相当偶然。我原来来自委内瑞拉,追求物理学和计算机工程,并对宇宙学和天体物理学有浓厚的兴趣。我预见到计算对物理学的日益重要性,这促使我学习编程和大规模计算问题。我的第一次真正接触数据科学是在一次实习中,我被要求进行数据分析。尽管从科学角度上,我对机器学习并不陌生,但将它应用于业务是对我来说的新领域。这次经历引起了我的兴趣,我开始深入研究数据挖掘和机器学习,标志着我数据科学职业的开始。 在墨西哥建立数据科学生态系统的早期挑战是什么? 当我来到墨西哥时,我意识到拉丁美洲需要建立一个数据科学社区。与那些与我分享此愿景的人一起,我们开始组织会议、分享知识,并与整个地区的专业人士建立联系。我们基本上为拉丁美洲第一批数据科学家奠定了基础。为了跟上全球趋势,我转向了VoAGI、Towards Data Science和Analytics Vidhya等平台,这些是当时很少的资源之一。 您是如何从学术界过渡到全面的数据科学职业的? 过渡是逐渐的。在攻读物理学硕士学位的同时,我已经开始为一些有趣的数据科学项目进行尝试。然而,墨西哥对数据科学专业知识的需求正在增长,公司开始与我合作。最终,我决定攻读物理学博士学位,并全身心地致力于数据科学职业。这个决定让我与墨西哥一些最大的公司合作,在建立他们的数据科学能力中发挥了战略性的作用。 您参与了哪些项目,并且它们是如何塑造您的职业生涯的? 我已经处理了不同的项目,预测客户行为,寻找最佳店铺位置,并评估银行风险。这些经验使我成为一名综合专家,在我目前在H2O.ai的角色中有所帮助,我负责各个行业的项目。我对新手的建议是:专注于数据科学的特定领域。如果你试图做太多的事情,很难被视为专家。 你在H2O.ai的角色是如何发展的?…
Leave a CommentTableau 是一种用于创建数据可视化、仪表板和故事的数据可视化工具当我开始使用这个工具时,经常使用”Show Me”功能创建数据可视化…
Leave a Comment几周前,我写过关于建立系统以生成更多高质量见解的文章我介绍了如何通过在诸如流程、工具等领域努力来提高团队的产出量…
Leave a Comment这篇文章继续我们的旅程,正好与第3节对接在这里,第4节,我们暂时离开建模,开发一个具有地理空间功能的类,这将非常…
Leave a Comment尽管关于检索增强生成(RAG)的讨论很广泛,尤其是在其应用于基于聊天的语言模型方面,但在本文中,我们旨在从不同的角度来观察并分析其…
Leave a Comment表示学习是通过深度神经网络学习给定数据集中最显著特征的任务通常情况下,它是在监督学习范式中隐含地完成的任务,它是…
Leave a Comment简介 在数据科学领域,创新与机遇相遇之处,对熟练专业人员的需求不断飙升。数据科学不仅仅是一种职业,它是解决复杂问题、推动创新和塑造未来的门户。行业每年的增长率超过36%,在数据科学领域的职业不仅有经济回报,也有知识满足感。理论知识和实践经验的结合对于在这个充满活力的环境中取得成功至关重要。在数据科学中的指导项目成为理论和实践之间的桥梁,提供在导师的引导下亲身学习的机会。 指导项目是什么? 在了解指导项目之前,了解一下数据科学职业的吸引力是很重要的。除了复杂的算法和庞大的数据集外,数据科学是解决现实世界挑战、推动行业发展的关键。最近的行业报告显示,数据科学家的中位薪资超过了平均薪资,使其成为一种吸引人的职业选择。行业的快速增长进一步扩大了具备正确技能和专业知识的人的机会。 独立数据科学项目中的挑战 挑战涵盖了管理庞大的数据集、实施复杂的算法和提取有意义的见解。现实世界的数据科学场景要求对技术细节和领域特定细微之处有着细腻的理解。在这里,指导项目的重要性就在于它们提供了一种结构化的方法和专家导师的指导,将困难的旅程转化为有启发性的学习体验。 我们可以帮助您完成的前15个指导项目 以下是我们在我们的BB+计划中涵盖的项目。我们的专家将通过他们卓越的指导帮助您深入了解它们的复杂性。 1. 纽约出租车需求预测 纽约出租车需求预测项目将参与者沉浸在动态的运输分析世界中。借助历史出租车行程数据,参与者深入预测模型来预测纽约市各个位置的出租车需求。该项目磨炼回归分析和时间序列预测技能,并提供关于空间数据可视化的见解。了解和预测出租车需求对于优化车队管理、提高客户服务以及贡献于高效的城市交通系统至关重要。 2. 场景分类挑战 在场景分类挑战中,参与者的任务是开发一个强大的图像分类模型,能够准确地将图像分类到预定义的类别中。利用卷积神经网络(CNNs)和迁移学习等深度学习技术,参与者获得了图像识别方面的实践经验。该项目的目标是构建准确的模型,并在图像分类的背景下理解特征提取、模型训练和验证的细微之处。 3. Pascal VOC图像分割 Pascal VOC图像分割项目向参与者介绍了引人入胜的图像分割世界。利用Pascal VOC数据集,参与者学习如何准确地轮廓绘制图像中的对象。该项目深入探讨语义分割的复杂性,其目标是将图像中的每个像素分配给特定的对象类别。精通图像分割对于计算机视觉、医学图像和自动驾驶等应用至关重要。 4. 场景生成 场景生成将参与者带入生成模型,特别是生成对抗网络(GANs)。其目标是通过生成类似于真实场景的图像来创建逼真的场景。参与者将探索GANs、对抗性训练和潜在空间操作的原理。该项目提高了生成模型的技能,并为创造由AI生成的内容提供了创造性的途径。 5. 大型超市销售预测…
Leave a Comment昨天我去了一家餐厅,“安菲拉”在吃了第四或第五块胡椒鸡之后,顺便说一下,它非常美味,我开始对我们消化和品味的能力感到惊讶…
Leave a Comment我和妻子正在装饰圣诞树我们去了地下室,拿出了树,把它搬到楼上,从下往上开始组装这总是一个魔幻的时刻🎄接着…
Leave a Comment线性代数是数学的一个分支,在数据科学中非常有用我们可以通过使用线性代数对大量的数据进行数学运算大多数机器学习算法都使用线性代数…
Leave a Comment这篇博客讨论了为数据科学家设计的五个平台,这些平台具备处理大规模数据集、模型、工作流和协作的专业能力,超越了GitHub所提供的功能
Leave a Comment介绍 数据科学已经成为技术市场上最有价值的技能之一。在数据科学革命之前,处理数百万个测试用例的数据需要花费长达11-12年的时间。但现在,只需几个月,有时甚至只需要几个星期!那么,学习数据科学需要多长时间?令人惊讶的是,你只需要一年就可以成为一名数据科学家。这取决于你的学习速度和持续性。让我们看看成为数据科学家需要多长时间,以及为什么你应该成为一名数据科学家。 为什么选择数据科学职业? 机器学习和人工智能正在征服世界,得益于不断发展的技术世界。根据预测,到2026年,数据科学市场收入预计将达到$3229亿美元。技术、大数据和机器学习算法在企业中的快速应用导致了数据科学的快速增长。 根据劳动统计局的数据,数据科学家平均年薪约为$100,000。有许多职业机会可供选择,你可以成为数据分析师、数据科学家等,拥有高薪水,符合你的技能。 成为数据科学家需要多长时间? 每个人成为数据科学家的道路可能不同。如果我们将每个月分为特定的主题,你可以在12个月内学习数据科学。只要保持持续的努力和学习的热情,任何人都可以在一年内掌握数据科学的艺术。 然而,学习曲线取决于你的持续性和学习数据科学的时间。由于之前对数据科学具有基础知识,有些人可以较短时间内掌握数据科学。 跟随并在12个月内学习数据科学的基础和复杂概念。让我们看看每个月的内容蓝图,了解学习数据科学需要多长时间。 第1个月:数据科学工具包 让我们以基本的数据科学工具开启你成为数据科学家的旅程。通过学习常见但重要的数据科学工具,如Python及其库NumPy、Pandas、Matplotlib和Seaborn,可以为接下来几个月打下坚实的基础。 第2个月:数据可视化 在打下坚实基础之后,我们进入成为数据科学家的下一个阶段,掌握数据可视化的艺术。熟悉数据可视化工具,如Tableau,掌握绘制图表、分布地图等技术。本月还将开始学习SQL。 第3个月:数据探索 第三个月重点介绍如何利用隐藏数据进行数据探索。数据探索是指将信息型数据以关键洞察的形式展示出来。本月将教你如何使用探索性数据分析(EDA)探索数据。你可以学习成为一名数据科学家所需的统计学基础知识。 第4个月:机器学习基础与讲故事的艺术 本月将开始你的机器学习奇妙之旅。你将学习机器学习的基础知识,并熟悉技术术语和技巧。通过结构化思维,你将掌握讲故事的艺术。 第5个月:高级机器学习 从第五个月开始,事情将变得严肃起来,因为您将学习高级机器学习算法来提升您的技能。在这个月里,您可以期望学习特征工程以及如何处理文本和图像。 第六个月:无监督机器学习 在这个月里,学会处理非结构化和无标签的数据。学习如何使用无监督机器学习算法处理非结构化数据,例如PCA、聚类、K-Means、异常检测等。您将终于开始进行项目。 第七个月:推荐引擎 推荐系统是Netflix、YouTube、Zomato等准确推荐背后的支撑。在第七个月,学习不同推荐技术背后的逻辑以及如何构建推荐引擎。同时,进一步实施令人兴奋的项目。 第八个月:处理时间序列数据 全球许多组织依赖时间序列数据观察数据集随时间的重复测量。在这个月里,学习如何处理时间序列数据,以及解决时间序列问题的有效技术。…
Leave a Comment概率是计算机科学的基础要素之一一些训练营可能会对这个主题过一下,然而,它对于你的计算机科学知识来说是不可缺少的
Leave a Comment欢迎回到“勇敢学习机器学习:解密L1和L2正则化”的第三篇文章之前,我们深入探讨了正则化的目的,并通过…解读了L1和L2的方法
Leave a Comment这篇博客文章是受Chris Molner的书《用Python介绍共形预测》启发的Chris在让新的机器学习技术变得易于理解方面非常出色我尤其…
Leave a Comment