介绍 农业一直是人类文明的基石,为全球数十亿人提供食物和生计。随着科技的进步,我们发现了增强农业实践的新颖方法。其中一项进展是使用视觉转换器(ViTs)来对作物的叶病进行分类。在本博客中,我们将探讨视觉转换器在农业中的革命性,通过提供一种高效准确的解决方案来识别和缓解作物病害。 木薯,又称木薯或椰菜,是一种多用途的作物,可用于提供日常主食和工业应用。它的耐寒能力和抗逆性使其成为在环境条件艰苦的地区必不可少的作物。然而,木薯植株容易受到各种病害的侵袭,其中CMD和CBSD是最具破坏性的病害之一。 CMD是由白蝗传播的病毒复合体引起的,导致木薯叶片出现严重的驳斑症状。而CBSD则是由两种相关病毒引起的,主要影响储存根,使其无法食用。及早识别这些病害对于防止作物大面积损害和确保粮食安全至关重要。视觉转换器是转换器架构的进化版本,最初设计用于自然语言处理(NLP),在处理视觉数据方面表现出高度有效性。这些模型将图像作为补丁的序列进行处理,使用自注意机制来捕捉数据中的复杂模式和关系。在木薯叶病分类的背景下,ViTs通过分析感染木薯叶子的图像来训练以识别CMD和CBSD。 学习成果 了解视觉转换器及其在农业中的应用,特别是叶病分类方面。 了解转换器架构的基本概念,包括自注意机制,以及如何将其适应于视觉数据处理。 了解视觉转换器(ViTs)在农业中的创新应用,特别是对木薯叶病早期检测的应用。 深入了解视觉转换器的优势,如可扩展性和全局上下文,以及它们面临的挑战,包括计算要求和数据效率。 本文是作为“数据科学博文马拉松”的一部分发表的。 视觉转换器的崛起 近年来,由于卷积神经网络(CNNs)的发展,计算机视觉取得了巨大的进步。CNNs一直是各种与图像相关的任务的首选架构,从图像分类到目标检测。然而,视觉转换器作为一种强大的替代方案崭露头角,提供了一种新颖的处理视觉信息的方法。Google Research的研究人员在2020年发布了一篇具有开创性的论文,题为“图像价值16×16个单词:大规模图像识别的转换器”。他们将最初设计用于自然语言处理(NLP)的转换器架构应用于计算机视觉领域。这种适应为该领域带来了新的可能性和挑战。 使用ViTs相对于传统方法具有几个优势,包括: 高准确性:ViTs在准确性方面表现出色,可以可靠地检测和区分叶病。 高效性:经过训练后,ViTs可以快速处理图像,适用于实时病害检测。 可扩展性:ViTs可以处理不同大小的数据集,适应不同的农业环境。 泛化能力:ViTs可以泛化到不同的木薯品种和病害类型,减少针对每种情况的特定模型的需求。 转换器架构简介 在深入了解视觉转换器之前,了解转换器架构的核心概念是至关重要的。转换器最初为NLP而设计,革新了语言处理任务。转换器的关键特点是自注意机制和并行化,可以更全面地理解上下文并加快训练速度。 转换器的核心是自注意机制,它使模型在进行预测时可以权衡不同输入元素的重要性。这种机制与多头注意力层结合使用,可以捕捉数据中的复杂关系。 那么,视觉转换器如何将转换器架构应用于计算机视觉领域呢?视觉转换器的基本思想是将图像视为补丁的序列,就像NLP任务将文本视为单词的序列一样。然后,转换器层通过将图像中的每个补丁嵌入向量来处理它。 Vision Transformer的关键组件 图像切片嵌入:将图像分为固定大小的非重叠切片,通常为16×16像素。然后将每个切片线性嵌入到较低维度的向量中。…
Leave a CommentTag: blogathon
介绍 技术进步的格局已经被大型语言模型(LLMs)的出现所彻底改变,这是人工智能创新分支的一个创新。这些模型以复杂的机器学习算法和大量的计算能力为驱动,代表了我们理解、生成和操纵人类语言能力的飞跃。LLMs展现出了解释微妙之处、构建连贯叙述甚至进行与人类交流相似的对话的非凡能力。当我们深入探索LLMs时,我们面临的是它们对各个行业、沟通范式和人机交互未来的深远影响。 然而,在这令人敬畏的潜力之中,存在着一个复杂的挑战网络。虽然LLMs在能力上有所承诺,但它们也不免受到偏见、伦理关切和潜在滥用的影响。这些模型从大量数据集中学习的能力引发了有关数据来源和可能存在的隐藏偏见的问题。此外,随着LLMs越来越多地融入我们的日常生活,隐私、安全和透明度问题变得至关重要。此外,围绕LLMs的内容生成和在决策过程中的作用的伦理考虑也需要仔细研究。 在这个探索LLMs领域的旅程中,我们将深入研究它们的功能复杂性、创新潜力、所带来的挑战以及指导其负责任发展的伦理框架。通过以思考的方式导航这些方面,我们可以利用LLMs的潜力,同时解决它们的局限性,最终塑造人类和机器在语言理解和生成方面和谐合作的未来。 学习目标 理解LLM基础知识:建立对大型语言模型(LLMs)的基础理解,包括它们的架构、组件和基本技术。了解LLMs如何处理和生成人类语言。 探索LLM应用:探索LLMs在各个行业中的多样化应用,从自然语言理解和内容生成到语言翻译和专家辅助。了解LLMs如何改变各个行业。 认识伦理考虑:深入研究围绕LLMs的伦理考虑,包括偏见、错误信息和隐私问题。学习如何应对这些挑战,确保LLMs的负责任和伦理使用。 分析LLM的影响:研究LLMs在沟通、教育和行业领域对社会和经济的影响。评估将LLMs整合到生活各个方面可能带来的潜在益处和挑战。 未来趋势和创新:探索LLMs的不断发展的格局,包括在对话能力、个性化体验和跨学科应用方面的预期进展。思考这些发展对技术和社会的影响。 实际应用:通过探索LLMs的实际用例,如内容创作、语言翻译和数据分析,应用你的知识。获得利用LLMs进行各种任务的实际经验。 本文是作为数据科学博客马拉松的一部分发表的。 语言模型的演变 语言模型的轨迹见证了近期显著进展的动态演变。在语言处理领域的这一进化之旅在大型语言模型(LLMs)的出现中达到了顶点,标志着自然语言处理(NLP)能力的一次范式转变。 旅程始于为后续创新铺平道路的基础语言模型。最初,语言模型的范围有限,难以捕捉人类语言的复杂性。随着技术的进步,这些模型的复杂性也在增加。早期的迭代版本采用基本语言规则和统计方法生成文本,尽管在上下文和连贯性方面存在限制。 然而,转换器的出现,一种神经网络架构,标志着一个重大的飞跃。转换器有助于理解整个句子和段落之间的上下文关系。这一突破为大型语言模型奠定了基础。这些模型,如GPT-3,拥有海量的参数,使它们能够处理和生成无与伦比的文本质量。 大型语言模型理解上下文并展现出与人类类似的文本生成能力。它们擅长把握复杂微妙之处,产生连贯、具有上下文相关的语言,可以媲美人类的创作能力。这些模型超越了简单的模仿,以惊人的熟练度从事翻译、摘要和创造性写作等任务。 LLMs的演变标志着语言洞察、机器学习进步和计算资源的重大飞跃的融合。这一轨迹还在继续展开,未来有望实现更为复杂的语言理解和生成能力。 探索大型语言模型 深入了解大型语言模型(LLM)的世界,让我们踏上了一段从一个基本问题开始的旅程:“第一个大型语言模型是什么?” 这个问题是打开LLM在自然语言处理(NLP)中深远影响和变革潜力的门户。 LLM的诞生对NLP是一次革命性的飞跃,它源于首个大型语言模型的出现。这个开创性的模型证明了不断提升语言处理能力的不懈追求。它标志着数据、计算能力和创新的神经网络架构的融合形成了一个巨大的成就。 这个开创性的模型打破了早期模型在捕捉上下文、连贯性和语言细节方面的限制。深度学习技术和大规模数据集的利用相结合,为性能带来了显著的飞跃。这个模型奠定了后续LLM的基础,展示了利用大量数据来增强语言理解和生成能力的潜力。 这个初始大型语言模型的影响在各种NLP应用中回响。它强调了自动化任务的可行性,这些任务曾经需要类似人类的语言能力。包括文本生成、翻译、情感分析和摘要等任务都得到了显著的改进。 大型语言模型的类型…
Leave a Comment介绍 扩散模型近年来引起了广泛关注,尤其在自然语言处理(NLP)领域。基于通过数据传播噪声的概念,这些模型在各种NLP任务中展现出了显著的能力。在本文中,我们将深入研究扩散模型,了解它们的基本原理,并探讨实际应用、优势、计算考虑因素、扩散模型在多模态数据处理中的相关性、预训练扩散模型的可用性以及挑战。我们还将通过代码示例展示它们在实际场景中的有效性。 学习目标 理解扩散模型在随机过程中的理论基础以及噪声在数据优化中的作用。 掌握扩散模型的架构,包括扩散和生成过程,以及它们如何迭代改善数据质量。 掌握使用PyTorch等深度学习框架实现扩散模型的实际知识。 本文是数据科学博客马拉松的一部分。 理解扩散模型 研究人员将扩散模型根植于随机过程理论,并设计它们通过迭代优化噪声数据来捕捉潜在的数据分布。关键思想是从输入数据的噪声版本开始,并逐步改进它们,就像扩散一样,信息逐渐传播到一个VoAGI中。 该模型通过在每个步骤中引入和消除噪声,迭代地将数据转化为接近真实潜在数据分布的过程。它可以被看作是一个类似于扩散的过程,其中信息逐渐在数据中传播。 在扩散模型中,通常有两个主要过程: 扩散过程:该过程通过添加噪声对数据进行迭代优化。在每个步骤中,将噪声引入数据,使其变得更加嘈杂。然后,模型旨在逐渐减少这种噪声,以逼近真实的数据分布。 生成过程:在数据经过扩散过程后,应用生成过程。该过程根据改进后的分布生成新的数据样本,有效地产生高质量的样本。 下图突出显示了不同生成模型工作方式的差异。 不同生成模型的工作方式:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 理论基础 1. 随机过程: 扩散模型建立在随机过程的基础上。随机过程是描述随机变量随时间或空间演化的数学概念。它以概率的方式模拟系统随时间的变化。在扩散模型的情况下,该过程涉及迭代优化数据。 2. 噪声: 扩散模型的核心概念是噪声。噪声指的是数据中的随机变异或不确定性。在扩散模型的上下文中,引入噪声到输入数据中,创建数据的噪声版本。 这里的噪声指的是粒子位置的随机波动。它代表了测量中的不确定性或扩散过程本身的固有随机性。噪声可以建模为从分布中采样的随机变量。在简单的扩散过程中,通常将其建模为高斯噪声。 3. 马尔可夫链蒙特卡洛(MCMC):…
Leave a Comment介绍 大型语言模型(LLMs)是一类特定的人工智能模型,旨在理解和生成类似于人类的文本。术语“大型”通常通过它们拥有的参数数量来量化。例如,OpenAI的GPT-3模型有1750亿个参数。可以将其用于各种任务,例如文本翻译、回答问题、写作论文、总结文本。尽管有很多资源展示了LLMs的能力,并提供了有关如何设置聊天应用程序的指导,但很少有人深入研究它们在现实业务场景中的适用性。在本文中,您将学习如何使用LangChain和Flan-T5 XXL构建基于大型语言的应用程序来创建文档查询系统。 学习目标 在深入研究技术细节之前,让我们确定本文的学习目标: 了解如何利用LangChain构建基于大型语言的应用程序 简要介绍文本到文本框架和Flan-T5模型 如何使用LangChain和任何LLM模型创建文档查询系统 现在让我们深入了解这些部分,以理解每个概念。 本文是Data Science Blogathon的一部分。 LangChain在构建LLM应用程序中的作用 LangChain框架旨在开发各种应用程序,例如聊天机器人、生成式问答(GQA)和摘要,以发挥大型语言模型(LLMs)的能力。LangChain为构建文档查询系统提供了全面的解决方案。这涉及通过分块对语料库进行预处理,将这些块转换为向量空间,在提出查询时识别相似块,并利用语言模型将检索到的文档细化为合适的答案。 Flan-T5模型概述 Flan-T5是谷歌研究人员开发的一种商业可用的开源LLM。它是T5(文本到文本转换Transformer)模型的变体。T5是一种先进的语言模型,它通过将NLP任务转换为基于文本的格式来训练。FLAN是Finetuned Language Net的缩写。 让我们深入构建文档查询系统 我们可以利用LangChain和Flan-T5 XXL模型在Google Colab的免费版中构建此文档查询系统。要在Google Colab中执行以下代码,我们必须选择“T4 GPU”作为我们的运行时。按照以下步骤构建文档查询系统: 1:导入必要的库…
Leave a Comment介绍 在当今世界中,生成式人工智能推动了创造力的边界,使机器能够创作出类似人类的内容。然而,在这种创新中存在一个挑战——AI生成的输出中存在偏见。本文深入探讨了“生成式人工智能中的偏见缓解”。我们将探讨各种偏见,从文化到性别,了解它们可能产生的现实影响。我们的旅程包括检测和缓解偏见的高级策略,如对抗训练和多样化训练数据。加入我们,揭开生成式人工智能中偏见缓解的复杂性,发现我们如何创建更加公平可靠的人工智能系统。 来源:Lexis 学习目标 理解生成式人工智能中的偏见:我们将探讨偏见在人工智能中的含义,以及为什么它在生成式人工智能中是一个真正的关注点,通过实际例子来说明其影响。 伦理和实际影响:深入研究人工智能偏见的伦理和现实后果,从不平等的医疗保健到对人工智能系统的信任问题。 生成式人工智能中的偏见类型:了解不同形式的偏见,如选择偏见和群体思维偏见,以及它们在人工智能生成内容中的表现方式。 偏见缓解技术:发现对抗训练和数据增强等先进方法,以应对生成式人工智能中的偏见。 案例研究:探索IBM的Project Debater和Google的BERT模型等实际案例,了解偏见缓解技术的有效应用。 挑战和未来方向:了解偏见缓解中的持续挑战,从不断变化的偏见形式到伦理困境,以及解决这些问题的未来方向。 本文作为数据科学博客马拉松的一部分发表。 理解生成式人工智能中的偏见 偏见,一个我们都熟悉的术语,在生成式人工智能中展现出新的维度。在本质上,人工智能中的偏见指的是AI模型生成的内容中可能出现的不公平或偏斜的观点。 本文将剖析这个概念,探讨它在生成式人工智能中的表现方式以及为什么它是一个如此重要的关注点。我们将避免使用术语,深入研究实际例子,以了解偏见对人工智能生成内容的影响。 代码片段理解生成式人工智能中的偏见 这是一个基本的代码片段,可以帮助理解生成式人工智能中的偏见: # 用于说明生成式人工智能中偏见的示例代码 import random # 定义一个求职者数据集 applicants =…
Leave a Comment介绍 自古以来,故事以其引起情感、激发创造力和传递重要信息的情节,一直吸引着我们的心灵。但如果我们能够想象,借助人工智能的力量,我们现在可以超越人类叙事的限制,让人工智能与我们共同创作故事会怎样呢?在本文中,我们将探索“生成式人工智能如何改变叙事”这个引人入胜的世界,并了解模型如何释放创造力。 学习目标 了解生成式人工智能模型背后的基本原理,以及它们如何利用上下文和模式生成连贯的叙述。 探索与人工智能共同创作叙事的过程,从构建引人入胜的提示来指导人工智能生成的内容,到动态共同创作融合人类创造力和机器建议的故事。 深入了解人工智能和人类创造力融合时正在发展的文学景观。展望一个未来,人工智能与作者合作,超越传统叙事边界,促进文化多样性,打造新的叙事范式。 本文是数据科学博客马拉松的一部分。 理解方法 人类创造力与人工智能之间的非凡互动正在改变现代叙事的创作方式。基于人工智能的故事制作概念是这一演变的核心,生成式人工智能模型成为焦点。在进入“与人工智能一起叙事”的道路之前,理解支撑这一新技术的基本思想至关重要。生成式人工智能模型的架构基于对大规模数据集的密集训练。通过接触各种文本来源,这种理解是通过模型模仿类似人类的反应并生成流畅的写作来获得的。 上下文在人工智能叙事中至关重要。这些模型不仅仅是词人,它们是有上下文的叙事者。您可以通过提示或不完整的句子来引导人工智能的创作流程,引导其生成与您愿景一致的连贯叙述。反过来,人工智能根据其训练和输入猜测最可能的下一句。将人工智能视为一位多才多艺的合作者,一位懂得语言和故事规范的助手。在创作文本时,人工智能借鉴了丰富的文学专业知识库,将单词连接起来,编织成无缝的叙事布局。机器学习和语言细微差别的结合使得人工智能能够模仿不同的写作风格、流派和语气。 此外,人工智能叙事是关于共同创作而不是作者身份。通过理解人工智能的能力并引导其输出,作家可以利用其潜力来补充和放大他们的创造力。人类创造力和机器生成的内容的这种合作创作为超越传统边界的独特叙事框架奠定了基础。 创造性合作:与人工智能共同创作叙事 人工智能为合作创作提供了前所未有的机会。“创造性合作”突出了人类作者和人工智能之间微妙的互动,两者融合在一起生成超越传统叙事界限的叙述。 打造完美的提示 作家通过构建包含人物介绍、地点、主题或情感细微差别的提示,创造了他们的想象力与人工智能建议之间的动态互动。考虑以下情景:“画中的眼睛跟随他走下去……”。人工智能检测到这个线索,并利用其训练构建与已建立上下文一致的回答。由于人类创造力和人工智能生成的信息的和谐结合,叙事之旅通过不同视角的混合而不断发展。 合著行动 考虑以下情景:您已经介绍了故事的前几行,现在是人工智能继续添加的时候了。人工智能建议下一句话,这个建议基于您已经建立的基础进行构建。这种来回交流继续,每一次互动都给叙事画布增加了一层。秘诀在于从人类写作到人工智能建议的无缝转换。在您的工作过程中,您回应人工智能的想法,将故事引向您想要的方向。这种动态互动产生了一种捕捉到人类智慧和人工智能创造力精髓的故事。 叙事的新边界:视角的融合 “创意协作”象征着叙事领域的一个新前沿,即人类作者与AI合作作者共同创建引人入胜、引发兴趣并推动想象力边界的叙事作品。随着AI模型的不断改进,创作关系变得更加深入,使作者能够探索以往被视为无法达到的流派、风格和视角。 与AI共创故事 在不断变化的叙事世界中,出现了一种迷人而具有变革性的现象:与人工智能和谐合作培育出的故事创作。 “与AI共创故事”的概念向我们介绍了一种开创性的技术,将人类想象力的卓越之处与AI的文本生成能力相结合,从而诞生出那些优雅地跨越人类和机器创造力边界的叙事作品。这种复杂地编织人类创造力和AI计算优雅的合作方法揭示了叙事演变中的一个新篇章。 短语“与AI共创故事”抓住了这个充满活力的企业的核心,其中作者不再是孤独的工匠,而是与复杂算法合作的合作者。当人类创作者和AI共同作者进行合作时,叙事作品被提升到一个新的可能领域 – 创新和传统无缝共存的领域。人类智慧和AI生成的材料的融合代表了一种范式转变,消除了创作者和创造物之间的鸿沟。当作家参与这种创意协作时,故事画布演变成一个动态的舞台,人类意图引导AI的潜力。AI生成的语言为叙事添加了新的洞察力。…
Leave a Comment介绍 时尚界一直在寻求方法来保持创新的前沿,以满足消费者不断变化的口味和偏好。如果你对时尚感兴趣,或者是一个时尚迷,你应该考虑稳定扩散器的能力。Segmind API使这一可能性变得非常容易。人工智能(AI)已经成为时尚界的一个改变者,改变了设计师创作、营销和销售产品的方式。本文将探讨Segmind Stable Diffusion XL 1.0在时尚界中的GenAI方法及其对行业的影响。 学习目标 介绍生成人工智能 稳定扩散的概念 时尚爱好者的GenAI应用和用例 稳定扩散的特点及其在时尚界中的可能性 对GenAI伦理的一瞥 本文是作为数据科学博文的一部分发表的。 生成AI 生成人工智能是AI的一个分支,它利用过去学到的相似性,采用创建/生成以前不存在的新想法的方法。例如,我们可以看到一个GenAI模型,它在棉花角色上进行训练,生成新的卡通图像。与AI中只是将新图像分类为卡通或非卡通不同,GenAI现在可以生成一种不包括它训练过的任何先前图像的新卡通图像。这打开了各种可能性,在本文中,我们只考虑其中一种可能性:在时尚界使用Segmind模型。 AI与时尚的交汇 正如我们所介绍的,时尚是一个不断发展的领域,受创造力、潮流和消费者偏好的推动。传统上,设计师和时尚品牌依靠人类创造力来创造新的风格和系列。这个过程耗时且常常限制创新。这就是GenAI发挥作用的地方。 时尚中的生成AI利用强大的算法和海量数据集生成独特而创新的设计、图案和风格。它还允许时尚设计师和品牌简化创意过程,缩短生产时间,并探索新的创意思路。 介绍Segmind Stable Diffusion XL 1.0 Segmind拥有各种用于各种GenAI任务的模型,可以随时使用,无需任何额外设置。所有这些模型都可以在网站上找到,并且结构良好,因此很容易浏览各种可用选项。在首页上,“Models”导航栏可以导航到所有模型的列表。这提供了一个令人震惊的模型收藏,帮助您轻松找到适合您特定用例的模型。…
Leave a Comment介绍 在不断发展的人工智能(AI)世界中,GPT-4是一种人类般的文本生成奇迹。就像与一个能说你的语言的机器聊天一样。但这里有个转折:AI需要的不仅仅是华丽的词句。我们必须理解它的思维方式,并决定我们是否可以信任它。这就是可解释的AI(XAI)登上舞台的地方。在本文中,您将了解未来的AI将如何与GPT-4和可解释的AI(XAI)一起发展,并填补这个差距。 学习目标 了解GPT-4:了解GPT-4是什么,它的能力以及为什么它在人工智能中至关重要。 探索可解释的AI(XAI):探索可解释的AI(XAI)的含义,为什么它很重要以及如何提高AI的透明度。 探索XAI的工作原理:深入了解XAI的工作原理,从输入数据到用户界面。 了解实际应用示例:了解GPT-4与XAI有和没有的情况下如何影响您的日常生活。 学习集成方法:了解如何使用代码示例将GPT-4与XAI集成。 确定应用案例:探索在医疗、法律和金融领域的实际应用。 本文作为数据科学博文马拉松的一部分发布。 了解GPT-4 来源- shift delete.Net 在我们深入了解XAI之前,让我们首先掌握GPT-4的要义。”生成式预训练变形器4“是OpenAI的语言模型系列的最新版本。它以生成连贯且上下文相关的文本而闻名。GPT-4的改进包括更大的训练数据集、更多的参数和改进的微调能力。这些特点使其成为各种应用中的强大工具,从内容生成到聊天机器人。 可解释的AI(XAI)的需求 什么是可解释的AI? 可解释的AI(XAI)是一种使AI系统更透明和可理解的方式。它帮助我们了解为什么AI做出某些决策,使我们更容易信任和使用在关键领域如医疗和金融中的AI。 来源- Rachel 随着AI系统越来越多地融入我们的生活,确保它们不是”黑匣子”变得至关重要。黑匣子AI模型,如一些神经网络的迭代版本,做出决策时没有提供其推理过程的见解。这种缺乏透明度带来了挑战,特别是在关键的医疗、金融和法律应用中。 想象一下由AI系统生成的医疗诊断。虽然诊断可能是准确的,但理解为什么AI得出这个结论同样重要,特别是对于医生和患者来说。这就是可解释的AI(XAI)发挥作用的地方。 XAI专注于创建能够产生结果并解释其决策的AI模型。通过提高透明度,”XAI旨在在AI系统中建立信任和责任感”。 可解释的AI(XAI)的工作原理 来源-…
Leave a Comment介绍 在这场令人兴奋的技术与创造力的融合中,人工智能(AI)赋予了图像生成以生命,改变了我们对创造力的理解。本博客探讨了“人工智能与图像生成的美学”,它涉及到像神经风格迁移和生成对抗网络(GANs)这样的AI技术在艺术表达中的技术方面。当像素和算法融合在一起时,数学准确性和美学吸引力之间的共生表现是显而易见的。让我们一起探究这种联系,并重新定义在人工智能和人类视觉共同推动创造力边界的时代中成为艺术家的含义。 学习目标 你将学习一些图像生成的方法。 你将了解创造力和技术融合的重要性。 我们将检查AI生成艺术的视觉质量。 你将了解人工智能对创造力的影响。 本文是数据科学博客马拉松的一部分。 图像生成的演变 人类的双手和创造力主要塑造了图像生成的起源。艺术家使用画笔、铅笔和其他材料精心创作视觉表现。随着数字时代的到来,计算机开始在这个领域发挥更大的作用。计算机图形最初是基础的、像素化的,缺乏人类触感的优雅。随着算法的改进,图像得到了增强,但仍然只是算法。 人工智能现在处于巅峰状态。在深度学习和神经网络的进步,特别是生成对抗网络(GANs)的改进之后,AI领域取得了显著发展。 AI已经从一个工具发展成为一个合作伙伴。由于它们的网络方法,GANs开始产生有时与照片有所不同的图像。 利用创造性AI探索风格和流派 创造性AI是一种可以帮助我们探索艺术、音乐和写作中不同风格和流派的工具。想象一下拥有一个能够分析著名绘画并创建融合不同风格的新艺术品的计算机程序。 在视觉艺术的世界中,创造性AI就像一个数字画家,可以以多种风格生成图像。想象一个计算机程序,它已经看过数千幅图片,从古典肖像到现代抽象艺术。通过学习这些图片,AI可以创作融合不同风格甚至发明风格的新图像。 例如,你可以生成将逼真的纹理与富有想象力的角色相结合的图像。这使得艺术家和设计师可以尝试各种创新思路,并开发出有趣的角色和独特的设计,这些设计是以前从未被考虑过的。 伦理问题的考虑 给予原创艺术家应有的认可:给予启发AI创作的艺术家应有的认可是一个关键问题。如果AI创建了类似于著名绘画的作品,我们应该确保原创艺术家得到应有的赞誉。 所有权和版权:谁拥有AI创作的艺术品?是编写AI程序的人,还是启发AI的艺术家共享所有权?为了避免冲突,必须明确回答这些问题。 AI中的偏见:AI在创作艺术时可能更偏好某些风格或文化。这可能是不公平的,应该仔细考虑以保护所有艺术形式。 可访问性:如果只有少数人能够使用新的AI工具,这对其他希望使用它们并利用它们提高生产力的人来说是不公平的。 数据隐私:当AI研究艺术以学习如何创作自己的艺术时,通常需要使用许多图像和数据。 情感影响:如果AI创作出与人类创作的艺术类似的作品,原创作品的情感价值可能会被忽视。 像许多其他技术和传统的交汇点一样,人工智能和艺术的交汇点是令人兴奋和具有挑战性的。伦理关切确保增长符合理想和包容性。 创建图像的方法论…
Leave a Comment介绍 神经进化是一个迷人的领域,其中人工智能将神经网络和进化算法结合起来培养其创造能力。它类似于人工智能的艺术或音乐之旅,使其能够创作杰作和作曲交响乐。本文深入探讨了神经进化,探索了其机制、应用和意义。它就像人工智能对自我提升的追求,就像一个崭露头角的艺术家完善自己的工艺。神经进化赋予了人工智能进化的能力,增强了其解决问题的能力、艺术天赋和游戏技巧。这个旅程体现了人工智能的成长,就像人类的持续发展一样,推动其走向创造卓越。 来源 – San Diego Consulting Group 本文是数据科学博文马拉松的一部分。 理解神经进化 想象一下,如果人工智能能够像生物一样学习和成长。这就是神经进化的本质。 进化算法 这就像是人工智能的生存游戏。它们创建许多人工智能玩家,让它们竞争,只保留最好的。然后,优胜者成为下一代的父母。这个循环重复进行,直到人工智能掌握了其任务。 来源 – Baeldung 初始化:首先创建一组可能的解决方案。 评估:根据问题的目标评估每个解决方案的表现。 选择:选择最好的解决方案作为下一代的父母。 交叉:父母结合他们的特点创建新的解决方案。 变异:引入随机变化,增加后代的多样性。 解决方案:经过多个世代,您应该得到改进的问题解决方案。 进化算法模仿自然选择的过程。它们创建一个人工智能模型的种群,评估其性能,选择最好的个体,并将它们繁殖以创建下一代。 # 一个用于优化的简单遗传算法…
Leave a Comment介绍 正如建筑师路德维希·密斯·凡·德罗所说:“少即是多”,这就是摘要的意义。摘要是将大量的文本内容减少为简洁、相关的要点,迎合了当今快节奏的信息消费方式。在文本应用中,摘要有助于信息检索,支持决策制定。基于生成式人工智能(如OpenAI GPT-3模型)的集成,不仅可以从文本中提取关键要素,生成保留源内容本质的连贯摘要,而且有趣的是,生成式人工智能的能力也可以扩展到视频摘要。这涉及从视频中提取关键场景、对话和概念,创建内容的缩减表示。可以通过多种不同的方式实现视频摘要,包括生成简短摘要视频、执行视频内容分析、突出显示视频的关键部分或使用视频转录创建视频的文本摘要。 Open AI Whisper API利用自动语音识别技术将口语转换为书面文本,从而提高了文本摘要的准确性和效率。另一方面,Hugging Face Chat API提供了最先进的语言模型,如GPT-3。 学习目标 本文我们将学习以下内容: 学习视频摘要技术 了解视频摘要的应用 探索Open AI Whisper模型架构 学习使用Open AI Whisper和Hugging Chat API实现视频文本摘要 本文作为数据科学博客马拉松的一部分发表。 视频摘要技术 视频分析…
Leave a Comment介绍 在机器学习这个充满活力的世界中,一个不断面临的挑战是如何充分利用有限的标记数据的潜力。这就是半监督学习的领域——一种巧妙的方法,将少量标记数据与大量未标记数据相结合。在本文中,我们将探索一种具有改变游戏规则的策略:利用生成模型,特别是变分自动编码器(VAEs)和生成对抗网络(GANs)。通过本文的精彩旅程,您将理解这些生成模型如何极大地提升半监督学习算法的性能,就像扣人心弦的故事中的巧妙转折一样。 来源:researchgate.net 学习目标 我们将首先深入探讨半监督学习,了解它的重要性,以及它在实际机器学习场景中的应用。 接下来,我们将介绍令人着迷的生成模型世界,重点介绍VAEs和GANs。我们将了解它们如何为半监督学习增添活力。 准备好动手实践吧,我们将指导您如何将这些生成模型整合到真实世界的机器学习项目中,从数据准备到模型训练。 我们将强调一些好处,如改进模型泛化能力和节省成本。此外,我们还将展示这种方法如何适用于不同领域。 每段旅程都会面临挑战,我们将应对这些挑战。我们还将看到重要的伦理考虑,确保您有能力在半监督学习中负责任地使用生成模型。 本文作为数据科学博客马拉松的一部分发表。 半监督学习简介 在广阔的机器学习领域中,获取标记数据可能是一项艰巨的任务。它常常涉及耗时且昂贵的工作来对数据进行注释,这可能限制了监督学习的可扩展性。这时就需要半监督学习,这是一种巧妙的方法,弥合了标记和未标记数据领域之间的差距。它认识到,虽然标记数据非常重要,但大量的未标记数据常常处于休眠状态,可以被利用起来。 想象一下,您的任务是教会计算机识别图像中的各种动物,但对每个动物进行标记是一项艰巨的任务。这就是半监督学习发挥作用的地方。它建议将少量标记图像与大量未标记图像混合在一起,用于训练机器学习模型。这种方法使模型能够利用未标记数据的潜力,提高其性能和适应性。就像在一个信息星系中有一些指引星星,帮助您导航。 来源:festinais.medium.com 在我们探索半监督学习的旅程中,我们将探讨其重要性、基本原理和创新策略,特别关注生成模型如VAEs和GANs如何增强其能力。让我们与生成模型一起释放半监督学习的力量。 生成模型:增强半监督学习 在引人入胜的机器学习世界中,生成模型成为真正的游戏改变者,为半监督学习注入新的活力。这些模型具有独特的才能——它们不仅可以理解数据的复杂性,还可以生成与其所学内容相似的新数据。在这个领域中表现最好的模型之一是变分自动编码器(VAEs)和生成对抗网络(GANs)。让我们踏上一段旅程,了解这些生成模型如何成为催化剂,推动半监督学习的界限。 VAEs擅长捕捉数据分布的本质。它通过将输入数据映射到隐藏空间,然后精心重构数据来实现。在半监督学习中,这种能力有着深远的意义,因为VAEs鼓励模型提炼有意义且简洁的数据表示。这些表示不需要大量标记数据的培养,却能提供改进的泛化能力,即使面对有限的标记示例。在另一方面,GANs进行着引人入胜的对抗舞蹈。在这里,生成器努力创建与真实数据几乎无法区分的数据,而鉴别器则扮演警惕的批评家的角色。这个动态二重奏导致数据增强,并为生成全新的数据值铺平了道路。正是通过这些引人入胜的表演,VAEs和GANs获得了关注,开启了半监督学习的新时代。 实际实施步骤 现在我们已经探索了理论方面,是时候卷起袖子,深入探讨使用生成模型的半监督学习的实际实施了。这是魔术发生的地方,我们将想法转化为现实解决方案。以下是将这种协同效应变为现实的必要步骤: 来源:google-cloud.com 第一步:数据准备 – 设置舞台 就像任何成功的制作一样,我们需要一个好的基础。首先收集你的数据。你应该有一小部分有标签的数据和大量未标记的数据。确保你的数据干净、组织良好,并准备好上场。…
Leave a Comment介绍 自从GenAI LLMs发布以来,我们已经开始以各种方式使用它们。最常见的方式是通过像OpenAI网站这样的网站使用ChatGPT或通过OpenAI的GPT3.5 API、Google的PaLM API或其他网站(如Hugging Face、Perplexity.ai)使用大型语言模型的API进行交互。 在所有这些方法中,我们的数据被发送到我们的计算机之外。它们可能容易受到网络攻击(尽管所有这些网站都保证最高的安全性,但我们不知道会发生什么)。有时,我们希望在本地运行这些大型语言模型,如果可能的话,对它们进行本地调整。在本文中,我们将介绍如何设置LLMs以在Oobabooga上本地运行。 学习目标 了解在本地系统上部署大型语言模型的重要性和挑战。 学习在本地创建运行大型语言模型的设置。 探索可以在给定的CPU、RAM和GPU Vram规格下运行的模型。 学习从Hugging Face下载任何大型语言模型以在本地使用。 检查如何为大型语言模型分配GPU内存以运行。 本文是作为数据科学博文马拉松的一部分发表的。 什么是Oobabooga? Oobabooga是一个用于大型语言模型的文本生成Web界面。Oobabooga是一个基于Gradio的Web UI。Gradio是一个被机器学习爱好者广泛使用的Python库,用于构建Web应用程序,Oobabooga就是使用这个库构建的。Oobabooga将所有在尝试在本地运行大型语言模型时需要设置的复杂事物都抽象出来。Oobabooga附带了许多扩展来集成其他功能。 使用Oobabooga,您可以提供来自Hugging Face的模型链接,它将下载模型,然后您可以立即开始推理模型。Oobabooga具有许多功能,并支持不同的模型后端,如GGML、GPTQ、exllama和llama.cpp版本。您甚至可以在LLM之上使用这个UI加载一个LoRA(低秩适应)。Oobabooga可以让您训练大型语言模型,创建聊天机器人/ LoRA。在本文中,我们将详细介绍使用Conda安装此软件。 设置环境 在本节中,我们将使用conda创建一个虚拟环境。所以,要创建一个新的环境,打开Anaconda Prompt并输入以下命令。…
Leave a Comment介绍 在迅速发展的生成式人工智能领域,一个新纪元已经到来。这场变革性的转变为AI应用带来了前所未有的进步,其中聊天机器人处于前沿。这些由AI驱动的对话代理模拟了人类般的互动,为企业和个人重新塑造了沟通方式。术语“Gen AI Era”强调了先进AI在塑造未来方面的作用。“解锁潜力”意味着聊天机器人驱动个性化体验、高效解决问题和创造力的转变阶段。标题提示了如何通过由Gen AI驱动的聊天机器人从头开始构建模型,从提示中生成文本,引领对话新时代的发现。 本文深入探讨了聊天机器人和Gen AI的交叉领域,通过从提示生成文本,揭示了它们的深远影响。它探讨了聊天机器人如何增强沟通、简化流程并提升用户体验。这一旅程揭示了聊天机器人在Gen AI时代的潜力,探索了它们在不同行业中的演变、应用和变革力量。通过前沿的AI创新,我们揭示了聊天机器人如何在这个充满活力的人工智能时代重新定义互动、工作和联系。 学习目标 Gen AI Era概述:解释Generation AI(Gen AI)的概念及其在人工智能不断发展的背景下的重要性。 强调聊天机器人的作用:强调聊天机器人在Gen AI范式中的关键作用,展示其对沟通和互动的变革性影响。 探索LangChain的见解:深入研究LangChain博客文章“LangChain DemoGPT:迎接Generation AI应用的新时代”,提取有关整合聊天机器人和Gen AI的关键见解和启示。 预测未来趋势:预测聊天机器人技术在Gen AI时代的未来发展轨迹,概述可能塑造人工智能领域的趋势、创新和可能性。 提供实用见解:为对在自己的背景中利用聊天机器人感兴趣的读者提供实用建议和推荐,指导他们有效地应用这种技术。 本文作为数据科学博客马拉松的一部分发表。 从脚本化回应到类人交互的旅程…
Leave a Comment介绍 从GPT-3.5到GPT-4在生成人工智能(AI)领域的转变标志着语言生成和理解的一个重大飞跃。GPT-4是“生成预训练变压器4”的简称,是迭代改进的成果,利用改进的架构和训练方法。 虽然GPT-3.5展示了在理解上下文和生成连贯文本方面的令人印象深刻的能力,但GPT-4进一步推动了这一发展轨迹。通过整合精细调整的训练数据、更大的模型尺寸和增强的微调技术,GPT-4产生了更精确和上下文感知的响应。 这一旅程凸显了人工智能语言能力卓越追求的不懈努力,突显了人工智能演进的迭代性质。从内容创作到客户服务,GPT-4在各个领域的应用展示了它改变人机交互的潜力。 GPT-4凸显了生成型人工智能的潜力,思考了技术的迅速演进。这一转变标志着一个精炼的里程碑,将人工智能引向深入的类人语言理解和生成。 学习目标 了解推动GPT-4丰富语言能力的基本技术进展。 解决道德复杂性,处理偏见和错误信息的影响。 探索GPT-4对行业、通信和社会的深远影响。 与GPT-4进行对话式发现,揭示其创造力。 想象GPT-4在塑造未来人工智能领域和创造力方面的作用。 在组织和行业中培养道德的人工智能整合方法。 本文作为数据科学博客马拉松的一部分发表。 揭开生成型人工智能语言模型的演进 探索人工智能的动态领域,创新扩展了人类成就的界限,我们深入探讨了生成型人工智能语言模型的故事,从GPT-3.5到具有变革性的GPT-4的里程碑。将这一旅程想象为技术智慧的叙事,每个阶段代表了在AI中复制人类语言的里程碑,从早期的语言处理到神经网络。GPT-3.5的背景凸显了GPT-4到来的重要性,这是一个超越数字的飞跃,为语言理解开启了新时代。一个时间轴或齿轮融合之类的图像可以在视觉上增强这个叙事。GPT-4体现了人类智慧和技术的融合,是AI生成语言未来的门槛。从GPT-3.5过渡到GPT-4标志着一个深刻的转变;我们的旅程展开,探索其中的影响、进步和更广阔的视野。 GPT-3.5的出现凸显了GPT-4的重要性,超越了数字的转变。它标志着一个转折点,超越了简单的数字,而是引领了一种语言理解和生成相互交织,重新构想沟通方式的时代。视觉隐喻,如时间轴展示语言AI进展的进程或齿轮融合象征着语言生成背后复杂的机制,可以增强这个叙事的共鸣。GPT-4不仅是AI进步的象征,也是人类智慧和技术实力之间的桥梁,是AI生成语言未来的门户。当我们从GPT-3.5过渡到GPT-4时,这种深刻的转变成为我们探索的核心,引导我们深入探讨其中的影响、进步以及在AI领域中展开的广阔视野。 GPT-3.5的架构 自注意机制 自注意机制是变压器架构的关键要素。它允许模型在一个序列中相对于特定单词对不同单词的重要性进行加权。这个机制捕捉到单词之间的关系和依赖性,使模型能够理解上下文。 多头注意力 在GPT-3.5中,与其他Transformer模型一样,自注意力机制被用于多个“头”或子注意力机制。每个头关注输入序列的不同方面,为模型提供捕捉各种关系和模式的能力。 位置编码 Transformer模型对于序列中单词的顺序没有固有的知识,而这对于语言理解是必不可少的。为了解决这个问题,位置编码被添加到输入嵌入中。这些编码提供关于序列中单词位置的信息,使模型能够理解语言的顺序性。 前馈神经网络 每个Transformer层包含处理多头注意力层输出的前馈神经网络。这些网络由全连接层和非线性激活函数组成,帮助模型捕捉数据中的复杂模式。…
Leave a Comment介绍 您是否曾经处理过非结构化数据,并考虑过一种方式来检测文档中表格的存在?以帮助您快速处理您的文档?在本文中,我们将不仅了解如何检测表格的存在,还将通过使用Transformer模型来识别这些表格的结构。这将由两个不同的模型实现。一个用于文档中的表格检测,另一个用于结构识别,可以识别表格中的行和列。 学习目标 如何在图像中检测表格的行和列? Table Transformers和Detection Transformer(DETR)的介绍 PubTables-1M数据集概述 如何使用Table Transformer进行推理 文档、文章和PDF文件是有价值的信息来源,通常包含传递关键数据的表格。从这些表格中高效提取信息可能会面临不同格式和表示之间的挑战。手动复制或重新创建这些表格可能耗时且繁琐。在PubTables-1M数据集上训练的Table Transformers解决了表格检测、结构识别和功能分析的问题。 本文是Data Science Blogathon的一部分。 如何实现的? 这是通过一种名为Table Transformer的Transformer模型实现的。它使用了一个名为PubTables-1M的大型注释数据集,可以检测文章中的文档或图像。该数据集包含约一百万个参数,并采用了一些措施来给模型带来最新的感觉。通过解决不完美注释、空间对齐问题和表格结构一致性等挑战,实现了高效性。与该模型一起发布的研究论文利用了Detection Transformer(DETR)模型,用于联合建模表格结构识别(TSR)和功能分析(FA)。因此,DETR模型是Table Transformer运行的骨干,由微软研究开发。让我们更详细地了解一下DETR。 DEtection TRansformer(DETR) 如前所述,DETR是DEtection TRansformer的缩写,包括使用编码器-解码器Transformer的卷积骨干,例如ResNet架构。这使得它有潜力进行目标检测任务。DETR提供了一种不需要复杂模型(如Faster R-CNN和Mask…
Leave a Comment介绍 生成式人工智能已经有了巨大发展,涵盖了许多技术,可以创建新颖且多样化的数据。虽然像生成对抗网络(GANs)和变分自编码器(VAEs)这样的模型已经占据了主导地位,但神经微分方程(NDEs)领域是一个鲜为人知但非常有趣的领域。在本文中,我们深入探讨了NDEs在生成式人工智能中的未知领域,揭示了它们的重要应用,并展示了完整的Python实现。 本文是数据科学博客马拉松的一部分。 神经微分方程的威力 神经微分方程(NDEs)将微分方程和神经网络的原理融合在一起,形成了一个动态框架,可以生成连续且平滑的数据。传统的生成模型通常生成离散样本,限制了它们的表现力,使其不适用于需要连续数据的应用,如时间序列预测、流体动力学和逼真的运动合成。NDEs通过引入连续的生成过程来弥合这一差距,实现了随时间无缝演化的数据创造。 神经微分方程的应用 时间序列数据 时间序列数据以其顺序性质而普遍存在于各个领域,从金融市场到生理信号。神经微分方程(NDEs)在时间序列生成中成为了一种开创性的方法,为理解和建模时间依赖关系提供了独特的视角。通过将微分方程的优雅与神经网络的灵活性相结合,NDEs使得AI系统能够以无与伦比的精度合成随时间演变的数据。 在时间序列生成的背景下,NDEs成为流体时序转换的指挥者。它们捕捉隐藏的动态,适应变化的模式,并向未来进行外推。基于NDE的模型能够处理不规则的时间间隔,适应噪声输入,并实现准确的长期预测。这种卓越的能力重新定义了预测的领域,使我们能够预测趋势,预测异常,并增强跨领域的决策能力。 NDE驱动的时间序列生成为基于AI的洞察力提供了一个画布。金融分析师利用其能力来预测市场趋势,医疗从业者利用其进行患者监测,气候科学家利用其预测环境变化。NDEs连续而适应性的特性赋予了时间序列数据以生命力,使得AI系统能够与时间的节奏和谐共舞。 物理模拟 进入物理模拟领域,神经微分方程(NDEs)成为能够揭示自然现象复杂结构的大师。这些模拟支撑着跨学科的科学发现、工程创新和创造性表达。通过将微分方程与神经网络相结合,NDEs赋予了虚拟世界以生命,实现了复杂物理过程的准确和高效仿真。 NDE驱动的物理模拟涵盖了我们宇宙的规律,从流体动力学到量子力学。传统方法通常需要大量的计算资源和手动参数调整。NDEs然而提供了一种新的范式,能够无缝地学习和适应动态系统,避免了对显式方程的需求。这加速了模拟工作流程,加快了实验,并扩大了可模拟的范围。 航空航天、汽车和娱乐等行业利用NDE驱动的模拟来优化设计、测试假设和创建逼真的虚拟环境。工程师和研究人员在未知的领域中探索,探索以前计算上限制的场景。实质上,神经微分方程构建了虚拟和有形之间的桥梁,在数字领域中呈现出物理学的细致交响乐。 运动合成 运动合成是动画、机器人和游戏中的关键组成部分,神经微分方程(NDEs)在这里展示了它们的艺术和实用的才能。传统上,由于底层动力学的复杂性,生成自然而流畅的运动序列存在挑战。NDEs重新定义了这个领域,赋予了基于AI的角色和代理以与人类直觉无缝共鸣的逼真运动。 NDEs赋予了运动合成连续性,无缝链接姿势和轨迹,并消除了离散方法中常见的突兀转换。它们解码了运动的基本机制,赋予了角色优雅、重量和响应性。从模拟蝴蝶翅膀的飘动到编排人形机器人的舞蹈,NDE驱动的运动合成是创造力和物理学的和谐融合。 NDE驱动的运动合成的应用是广泛和变革性的。在电影和游戏中,角色的移动具有真实感,引起情感参与。在机器人技术中,机器以优雅和精确的方式导航环境。康复设备适应用户的运动,促进康复。在NDE的引领下,运动合成超越了简单的动画,成为了一种编排运动交响乐的途径,与创作者和观众产生共鸣。 实现神经微分方程模型 为了说明NDE的概念,让我们深入探讨使用Python和TensorFlow实现基本的连续时间VAE。该模型捕捉了连续的生成过程,并展示了微分方程和神经网络的集成。 (注意:在运行下面的代码之前,请确保安装了TensorFlow和相关依赖项。) import tensorflow as tf…
Leave a Comment介绍 利用现代多核处理器的全部功能,多进程是计算机科学中的一个基本概念,使程序能够同时运行多个任务或进程。通过将任务分为几个进程,每个进程都有自己的内存空间,多进程能够克服性能限制,与传统的单线程技术相比具有优势。由于进程是隔离的,所以能够保证稳定性和安全性,避免内存冲突。特别是对于需要进行大量计算操作的 CPU 绑定作业,多进程优化代码执行的能力至关重要。它是 Python 应用程序的一项重大改革,其中速度和效果至关重要,例如数据处理、科学模拟、图像和视频处理以及机器学习。 学习目标 全面了解多进程及其在利用现代多核处理器提高 Python 应用程序性能方面的重要性。 学习如何使用 Python 的 ‘multiprocessing’ 模块创建、管理和同步多个进程,实现任务的并行执行,同时确保稳定性和数据完整性。 探索优化多进程性能的策略,包括考虑任务性质、资源利用和解决通信开销等因素,以开发高效和响应迅速的 Python 应用程序。 多进程 利用现代多核处理器的能力,多进程是计算机编程中的一种强大方法,使程序能够同时执行多个任务或进程。多进程生成多个具有自己内存空间的进程,而不是多线程,多线程是在单个进程内运行多个线程。这种隔离可以防止进程之间干扰彼此的内存,从而提高稳定性和安全性。 本文是数据科学博文的一部分。 多进程在优化代码执行中的重要性 软件开发的一个重要目标是优化代码执行。单个核心的处理能力对于传统的顺序编程来说可能是一个限制。通过允许将任务分配到多个核心上,多进程克服了这个限制,并充分利用了现代处理器的能力。因此,需要大量处理的作业运行速度更快,性能显著提高。 多进程有益的场景 CPU…
Leave a Comment介绍 Snapchat开创了一个时代,现实与创新无缝融合,由生成式AI放大。这种变革力量将普通照片变成惊人的奇迹,推动体验超越滤镜。算法可以识别表情,预测行为,并创造美学奇观。生成式AI赋予数字相遇生命,超越平凡。头像演变成独特的Bitmoji,将自我表达提升为数字杰作。表情符号捕捉情感,以AI的语言建立联系。这种非凡的AI不仅增强了视觉效果,还预测未来的趋势。它模拟衰老,并引发有趣的面部交换,引发笑声。Snapchat中的生成式AI通过超越当下,提供了对无限未来的一瞥。 让我们小心地走在创新的道路上,时刻谨记扩展和伦理之间的平衡。 学习目标 深入了解生成式AI的基本原理及其在Snapchat平台上推动创造性体验中的作用。 生成式AI驱动Snapchat的AR滤镜和镜头,实现动态和身临其境的视觉效果,融合现实和数字艺术。 探索生成式AI如何通过增强现实实现个性化和互动体验,提升用户参与度。 本文是数据科学博文马拉松的一部分。 Snapchat的AR滤镜和镜头 Snapchat的AR滤镜和镜头通过无缝融合真实世界和数字世界,重新构想了视觉表达。这些身临其境的功能使用户可以将自己的面部和环境变成动态画布,改变每一张照片。生成式AI和实时图像处理之间的复杂相互作用是AR滤镜和镜头的核心。生成对抗网络和神经网络是能够从实时视频流中评估和理解面部特征和环境信息的生成式AI算法。Snapchat现在可以精确地映射和跟踪用户的表情、动作甚至周围环境。Snapchat的AR滤镜和镜头不仅仅是基本的美学增强,它们还激发个人联系、创造性叙事和参与度。品牌也利用这一尖端技术进行有趣的营销活动,与人们创造难忘的相遇。 创建人脸滤镜 让我们看看如何使用Python和TensorFlow库创建一个简单的人脸滤镜,将虚拟眼镜添加到用户的脸上。 import dlib import cv2 import numpy as np import matplotlib.pyplot as plt #…
Leave a Comment介绍 Swin Transformer 是视觉 Transformer 领域的一项重大创新。Transformer 在各种任务中展示了出色的性能。在这些 Transformer 中,Swin Transformer 作为计算机视觉的骨干,提供了无与伦比的灵活性和可扩展性,以满足现代深度学习模型的需求。现在是时候发掘这个 Transformer 的全部潜力,见证其令人印象深刻的能力。 学习目标 本文旨在介绍 Swin Transformer,这是一类强大的分层视觉 Transformer。通过阅读本文,您应该了解以下内容: Swin Transformer 的关键特性 它们在计算机视觉模型中作为骨干的应用 Swin Transformer 在图像分类、物体检测和实例分割等各种计算机视觉任务中的优势。…
Leave a Comment介绍 spaCy是一款用于自然语言处理(NLP)的Python库。spaCy的NLP流水线是免费且开源的。开发者可以使用它来创建信息提取和自然语言理解系统,就像Cython一样。它具有简洁且用户友好的API,适用于生产环境。 如果你经常处理大量文本,你会想要了解更多关于它的信息。例如,它是关于什么的?在什么上下文中这些术语的含义是什么?对谁进行了什么操作?提到了哪些企业和产品?哪些文本可以相互比较? spaCy专为生产环境使用,可以帮助您开发处理大量文本的应用程序,并“理解”这些文本。它可用于创建信息提取、自然语言解释和深度学习的预处理文本系统。 学习目标 了解spaCy的基础知识,如分词、词性标注和命名实体识别。 了解spaCy的文本处理架构,它高效且快速,适用于大规模的NLP任务。 在spaCy中,您可以探索NLP流水线,并为特定任务创建定制的流水线。 探索spaCy的高级功能,包括基于规则的匹配、句法分析和实体链接。 了解在spaCy中可用的许多预训练语言模型以及如何在各种NLP应用中使用它们。 使用spaCy学习命名实体识别(NER)策略,以识别和分类文本中的实体。 本文是Data Science Blogathon的一部分。 统计模型 spaCy的某些特性可以自主运行,而其他特性则需要加载统计模型。这些模型使spaCy能够预测语言注释,例如确定一个词是动词还是名词。目前,spaCy提供了多种语言的统计模型,您可以将它们作为独立的Python模块进行安装。它们通常包括以下元素: 为了在上下文中预测这些注释,为词性标注器、依赖解析器和命名实体识别器分配二进制权重。 词汇表中的词条是词和它们的上下文无关特性,例如形式或拼写。 数据文件包括词形还原规则和查找表。 词向量是单词的多维意义表示,允许您确定它们的相似程度。 在加载模型时,使用配置选项,如语言和处理流水线设置,将spaCy置于适当的状态。 要导入模型,只需运行spacy.load(‘model_name’),如下所示: !python -m spacy…
Leave a Comment介绍 大型语言模型(LLMs)已经改变了整个世界。特别是在人工智能社区中,这是一个巨大的飞跃。几年前,建立一个能够理解和回复任何文本的系统是不可想象的。然而,这些能力是以牺牲深度为代价的。通才型的LLMs是万能的,但却无所专精。对于需要深度和精确性的领域来说,如幻觉等缺陷可能是代价高昂的。这是否意味着医学、金融、工程、法律等领域永远无法享受到LLMs的好处?专家们已经开始构建专门针对这些领域的专用领域LLMs,利用了与自监督学习和RLHF相同的基本技术。本文探讨了专用领域LLMs及其产生更好结果的能力。 学习目标 在我们深入技术细节之前,让我们概述本文的学习目标: 了解大型语言模型(LLMs)的概念,了解它们的优势和好处。 了解流行通才型LLMs的局限性。 了解什么是专用领域LLMs以及它们如何帮助解决通才型LLMs的局限性。 探索构建专用领域语言模型的不同技术,并通过示例展示它们在法律、代码补全、金融和生物医学等领域的性能优势。 本文作为数据科学博文的一部分发表。 什么是LLMs? 大型语言模型(LLM)是一个包含数亿到数千亿个参数的人工智能系统,旨在理解和生成文本。训练过程涉及将模型暴露于来自互联网文本(包括书籍、文章、网站和其他书面材料)的许多句子,并教导它预测句子中的掩码词或后续词。通过这样做,模型学习了其训练文本中的统计模式和语言关系。它们可以用于各种任务,包括语言翻译、文本摘要、问答、内容生成等。自从Transformer被发明以来,已经构建和发布了无数个LLMs。最近流行的LLMs的一些例子包括Chat GPT、GPT-4、LLAMA和Stanford Alpaca,它们取得了突破性的性能。 LLMs的优势 LLMs已经成为语言理解、实体识别、语言生成等问题的首选解决方案。在GLUE、Super GLUE、SQuAD和BIG基准测试等标准评估数据集上取得的出色表现反映了这一成就。BERT、T5、GPT-3、PALM和GPT-4发布时都在这些标准测试中取得了最先进的结果。GPT-4在BAR和SAT等方面的得分超过了普通人。下图(图1)显示了大型语言模型出现以来在GLUE基准测试中的显著改进。 大型语言模型的另一个主要优势是其改进的多语言能力。例如,训练了104种语言的多语言BERT模型在不同语言上展现出了很好的零-shot和few-shot结果。此外,利用LLMs的成本变得相对较低。出现了一些低成本的方法,如提示设计和提示调整,可以确保工程师可以以较低的成本轻松利用现有的LLMs。因此,大型语言模型已成为基于语言的任务的默认选择,包括语言理解、实体识别、翻译等。 通才型LLMs的局限性 大多数流行的LLMs,如上述提到的那些,是训练于互联网文本、书籍、维基百科等各种文本资源的通才型LLMs。这些LLMs有多种应用,包括搜索助手(使用GPT-4的Bing Chat,使用PALM的BARD)、内容生成任务(如编写营销邮件、营销内容和销售演讲稿)以及问答任务(如个人聊天机器人、客户服务聊天机器人等)。 尽管通才型人工智能模型在理解和生成各种主题的文本方面表现出色,但它们有时需要更深入、更细致的专业领域知识。例如,“债券”是金融行业的一种借贷形式。然而,通用语言模型可能无法理解这个独特的短语,并将其与化学中的债券或两个人之间的债券混淆。相反,专门针对特定使用案例的LLMs对与特定行业相关的术语有专门的理解,能够正确解释行业特定的概念。 此外,通用语言模型(LLMs)存在多个隐私挑战。例如,在医学LLMs的情况下,患者数据非常重要,将此类机密数据暴露给通用LLMs可能会违反隐私协议,因为RLHF等技术的存在。另一方面,专业领域的LLMs采用封闭框架,以避免数据泄露。 同样,通用LLMs容易出现严重的幻觉问题,因为它们往往是为创意写作而量身定制的。而专业领域的LLMs在领域特定的基准测试中表现更加精确,并且性能显著更好,如下面的应用案例所示。 专业领域的LLMs 在特定领域的数据上训练的LLMs被称为专业领域的LLMs。领域这个术语可以涵盖从特定领域(如医学、金融等)到特定产品(如YouTube评论)的任何内容。专业领域的LLMs旨在在领域特定的基准测试上表现最佳;通用基准测试不再关键。构建专用语言模型的方法有多种。最常见的方法是将现有的LLMs进行微调以适应特定领域的数据。然而,对于追求在利基领域中达到最先进性能的用例来说,预训练才是正确的选择。…
Leave a CommentIntroduction 深度卷积生成对抗网络(DCGANs)通过结合生成对抗网络(GANs)和卷积神经网络(CNNs)的强大能力,彻底改变了图像生成领域。DCGAN模型可以创建出极其逼真的图像,使其成为各种创意应用的重要工具,例如艺术生成、图像编辑和数据增强。在本逐步指南中,我们将向您介绍使用Python和TensorFlow构建DCGAN模型的过程。 DCGAN在艺术和娱乐领域中被证明是非常有价值的,使艺术家能够创造出新颖的视觉体验。此外,在医学影像领域,DCGAN可以生成高分辨率的扫描图像,提高诊断准确性。它们在数据增强方面的作用可以增强机器学习模型,同时它们还通过模拟逼真的环境来为建筑和室内设计做出贡献。通过无缝地融合创造力和技术,DCGAN已经超越了单纯的算法,在不同领域推动了创新进展。通过本教程的最后,您将拥有一个结构良好的DCGAN实现,可以从随机噪声生成高质量的图像。 本文是Data Science Blogathon的一部分。 先决条件 在我们开始实现之前,请确保您已安装了以下库: TensorFlow:pip install tensorflow NumPy:pip install numpy Matplotlib:pip install matplotlib 确保您对GAN和卷积神经网络有基本的了解。熟悉Python和TensorFlow也将有所帮助。 数据集 为了演示DCGAN模型,我们将使用著名的MNIST数据集,其中包含从0到9的手写数字的灰度图像。每个图像是一个28×28像素的正方形,使其成为一个完美的数据集。MNIST数据集已经预加载在TensorFlow中,因此很容易访问和使用。 导入 让我们首先导入必要的库: import tensorflow as…
Leave a Comment简介 生成式人工智能在过去几年中获得了突然的关注。医疗保健和生成式人工智能之间的强烈吸引力也并不令人意外。人工智能(AI)已经迅速改变了各个行业,医疗保健领域也不例外。人工智能的一个特定子集,生成式人工智能,在医疗保健领域已经成为一个改变者。 生成式人工智能系统可以生成新的数据、图像,甚至完整的艺术作品。在医疗保健领域,这项技术对于改进诊断、药物研发、患者护理和医学研究具有巨大的潜力。本文探讨了生成式人工智能在医疗保健领域的潜在应用和好处,并讨论了其实施挑战和道德考虑。 学习目标 生成式人工智能及其在医疗保健中的应用。 生成式人工智能在医疗保健中的潜在好处。 在医疗保健中实施生成式人工智能的挑战和限制。 生成式人工智能在医疗保健中的未来趋势。 本文作为Data Science Blogathon的一部分发表。 生成式人工智能在医疗保健中的潜在应用 已经在几个领域进行了研究,以了解生成式人工智能如何融入医疗保健。它对药物的分子结构和化合物的生成产生了影响,促进了潜在药物候选物的鉴定和发现。这可以节省时间和成本,同时利用尖端技术。其中一些潜在的应用包括: 增强医学成像和诊断 医学成像在诊断和治疗计划中起着至关重要的作用。生成式人工智能算法,如生成式对抗网络(GAN)和变分自动编码器(VAE),已经显著改进了医学图像分析。这些算法可以生成类似真实患者数据的合成医学图像,有助于机器学习模型的训练和验证。它们还可以通过生成额外的样本来增强有限的数据集,提高基于图像的诊断的准确性和可靠性。 促进药物发现和开发 发现和开发新药物是复杂、耗时和昂贵的。生成式人工智能可以通过生成具有所需特性的虚拟化合物和分子,显著加快这个过程。研究人员可以利用生成模型来探索广阔的化学空间,实现新药候选物的发现。这些模型可以从现有数据集中学习,包括已知的药物结构和相关属性,生成具有理想特性的新分子。 个性化医学和治疗 生成式人工智能有潜力通过利用患者数据来改变个性化医学,创建量身定制的治疗计划。通过分析大量的患者信息,包括电子健康记录、基因组信息和临床结果,生成式人工智能模型可以生成个性化的治疗建议。这些模型可以识别模式,预测疾病进展,并估计患者对干预措施的反应,使医疗保健提供者能够做出明智的决策。 医学研究和知识生成 生成式人工智能模型可以通过生成符合特定特征和约束的合成数据来促进医学研究。合成数据可以解决与共享敏感患者信息相关的隐私问题,同时允许研究人员提取有价值的见解并发展新的假设。 生成式人工智能还可以为临床试验生成合成患者队列,在进行昂贵且耗时的实际患者试验之前,使研究人员能够模拟各种场景并评估治疗效果。这项技术有潜力加速医学研究,推动创新,并扩大对复杂疾病的理解。 案例研究:CPPE-5医疗个人防护装备数据集 CPPE-5(医疗个人防护装备)是Hugging Face平台上的一个新数据集。它为在医学中进行生成式人工智能提供了强有力的背景。您可以通过对医疗个人防护装备进行分类来将其纳入计算机视觉任务中。这也解决了其他流行数据集关注广泛类别的问题,因为它专为医学目的而设计。利用这个新的医学数据集可以培养新的生成式人工智能模型。…
Leave a Comment介绍 自从引入以来,OpenAI已经发布了无数基于他们顶级GPT框架构建的生成式AI和大型语言模型,包括ChatGPT,他们的生成式对话AI。在成功创建对话语言模型之后,开发人员不断尝试创建可以开发或辅助开发人员编写应用程序的大型语言模型。许多公司已经开始研究这些LLM,包括OpenAI,它们将帮助开发人员通过LLM更快地构建应用程序,了解编程语言。Google构建了Codey,PaLM 2的经过微调的模型,能够执行各种编码任务。 还阅读:PaLM 2 By Google To Tackle GPT-4 Effect 学习目标 了解Codey是如何构建的 学习如何在Google Cloud Platform上使用Codey 了解Codey可以接受的提示类型 探索和参与Codey内的不同模型 利用Codey生成可行的Python代码 测试Codey以查看其如何识别和解决代码中的错误 本文作为《数据科学博文马拉松》的一部分发布。 Codey是什么? Codey是Google最近构建和发布的基础模型之一。Codey基于PaLM 2大型语言模型。Codey是PaLM 2大型语言模型的经过微调的模型。通过对大量高质量的代码和编码文档进行微调,Google声称Codey可以在包括Python、C、Javascript、Java等在内的20多种编程语言中编码。Codey被用于增强Google产品,如Google…
Leave a Comment介绍 在过去几年中,自然语言处理(NLP)领域发生了一场令人瞩目的变革,这完全归功于大型语言模型的出现。这些复杂的模型为各种应用打开了大门,从语言翻译到情感分析,甚至智能聊天机器人的创建。 但它们的多功能性使得这些模型与众不同;将它们微调以应对特定任务和领域已经成为标准做法,释放出它们的真正潜力,将其性能提升到新的高度。在这本全面的指南中,我们将深入探讨大型语言模型的微调世界,涵盖从基础知识到高级知识的一切。 学习目标 了解微调的概念和将大型语言模型调整适应特定任务的重要性。 探索多任务、指令微调和参数高效微调等高级微调技术。 获得实际应用的实用知识,微调的语言模型在其中革新行业。 了解大型语言模型微调的逐步过程。 实施完善的微调机制。 了解标准微调和指令微调之间的区别。 本文作为数据科学博文的一部分发表。 理解预训练语言模型 预训练语言模型是在互联网上获取的大量文本数据上进行训练的大型神经网络。训练过程包括预测给定句子或序列中缺失的单词或令牌,从而使模型对语法、上下文和语义有深刻的理解。通过处理数十亿个句子,这些模型可以把握语言的复杂性,有效捕捉其细微差别。 流行的预训练语言模型示例包括BERT(双向编码器表示转换)、GPT-3(生成式预训练转换器3)、RoBERTa(经过优化的鲁棒BERT预训练方法)等等。这些模型以其出色的性能在文本生成、情感分类和语言理解等任务上表现出色。 让我们详细讨论其中一个语言模型。 GPT-3 GPT-3(生成式预训练转换器3)是一种突破性的语言模型架构,改变了自然语言生成和理解。Transformer模型是GPT-3架构的基础,它包含了多个参数,以产生出色的性能。 GPT-3的架构 GPT-3由一系列Transformer编码器层组成。每个层由多头自注意力机制和前馈神经网络组成。前馈网络处理和转换编码表示,注意力机制使模型能够识别单词之间的依赖关系和关联。 GPT-3的主要创新是其巨大的规模,它拥有令人惊叹的1750亿个参数,使其能够捕捉到大量的语言知识。 代码实现 您可以使用OpenAI API与GPT-3模型进行交互。以下是使用GPT-3进行文本生成的示例。 import openai…
Leave a Comment介绍 适应下游任务的BERT包括利用预训练的BERT模型,并在其上添加一层并对其进行目标任务的训练以定制化。这种技术允许模型从用于训练的数据中了解任务细节,同时利用预训练的BERT模型的广泛语言表达知识。使用Python中的hugging face transformers包来微调BERT。描述您的训练数据,包括输入文本和标签。根据您的数据使用BertForSequenceClassification类的fit()函数来微调预训练的BERT模型以用于下游任务。 学习目标 本文的目标是深入探讨BERT的微调。 通过详细分析,突出微调对下游任务的好处。 全面阐述下游的操作机制。 为下游活动的BERT微调提供完整的顺序概述。 BERT如何进行微调? 通过训练一个新的层,将预训练模型与所需工作的训练数据适应到特定的下游任务,从而进行BERT的微调。这个过程使模型能够获得任务特定的知识,并提升在目标任务上的性能。 BERT微调过程中的主要步骤 1:使用hugging face transformers库加载预训练的BERT模型和分词器。 import torch # 根据可用性选择合适的设备(CUDA或CPU) gpu_available = torch.cuda.is_available() device = torch.device(“cuda”…
Leave a Comment介绍 糖尿病视网膜病变是一种导致视网膜血管变化的眼部疾病。如果不及时治疗,会导致视力丧失。因此,检测糖尿病视网膜病变的阶段对于预防眼盲至关重要。本案例研究旨在从糖尿病视网膜病变症状中检测眼盲,以防止患者眼盲。这些数据是通过各种训练有素的临床专家使用眼底相机(拍摄眼部后部的相机)在农村地区收集的。这些照片是在各种成像条件下拍摄的。2019年,Kaggle举办了一个竞赛(APTOS 2019盲人检测),用于检测糖尿病视网膜病变的阶段;我们的数据来自同一个Kaggle竞赛。早期发现糖尿病视网膜病变可以加快治疗并显著降低视力丧失的风险。 训练有素的临床专家的人工干预需要时间和精力,尤其是在不发达国家。因此,本案例研究的主要目标是使用高效的技术来检测疾病的严重程度,以预防眼盲。我们采用深度学习技术来获得对疾病严重程度进行分类的有效结果。 学习目标 了解糖尿病视网膜病变:了解眼部疾病及其对视力的影响,强调早期检测的重要性。 深度学习基础知识:探索深度学习的基础知识及其在诊断糖尿病视网膜病变中的相关性。 数据预处理和增强:了解如何有效地准备和增强用于训练深度学习模型的数据集。 模型选择和评估:学习选择和评估用于严重程度分类的深度学习模型。 实际部署:了解使用Flask进行实际预测的最佳模型的部署。 本文是数据科学博客马拉松的一部分。 业务问题 在这里,人的病情严重程度被分为五个类别,即多类别分类,因为一个人只能被识别为其中一种严重程度。 业务约束 在医疗领域,准确性和可解释性非常重要。因为错误的预测会导致忽视病情,可能夺走一个人的生命,我们没有任何严格的延迟关注,但我们必须对结果准确。 数据集描述 数据集包括3,662张已标记的临床患者视网膜图像,训练有素的临床专家根据糖尿病视网膜病变的严重程度对每个图像进行分类,如下所示。 0 — 无糖尿病视网膜病变, 1 — 轻度, 2 —…
Leave a Comment介绍 识别下一个单词是下一个单词预测的任务,也被称为语言建模。自然语言处理的基准任务之一就是语言建模。在其最基本的形式中,它涉及根据给定的一串词语选择最有可能出现的下一个单词。语言建模在许多不同领域都有各种各样的应用。 学习目标 认识统计分析、机器学习和数据科学中使用的各种模型背后的思想和原则。 学习如何创建预测模型,包括回归、分类、聚类等,以根据数据生成精确的预测和类型。 了解过拟合和欠拟合的原理,并学习如何使用准确率、精确度、召回率等指标评估模型性能。 学习如何预处理数据并确定建模的相关特征。 学习如何使用网格搜索和交叉验证调整超参数并优化模型。 本文作为数据科学博客马拉松的一部分发布。 语言建模的应用 以下是一些值得注意的语言建模应用: 手机键盘文本推荐 智能手机键盘上的一个功能称为手机键盘文本推荐,或者预测文本或自动建议,在您输入时建议单词或短语。它旨在加快输入速度,减少错误,并提供更准确和与上下文相关的建议。 也可阅读:构建基于内容的推荐系统 谷歌搜索自动完成 每次我们使用谷歌等搜索引擎搜索任何内容时,我们会得到许多想法,随着我们不断添加短语,推荐会变得越来越好,与当前搜索更相关。那么,这是如何实现的呢? 自然语言处理(NLP)技术使其成为可能。在这里,我们将使用自然语言处理(NLP)来创建一个预测模型,利用双向LSTM(长短期记忆)模型来预测句子的剩余部分。 了解更多:什么是LSTM?长短期记忆简介 导入必要的库和包 最好导入构建下一个单词预测模型所需的必要库和包。下面是你通常需要的一些库的示例: import pandas as pd import…
Leave a Comment介绍 在机器学习和自然语言处理中,一种高效的方法是主题建模。文本语料库是一组文档的示例。该技术涉及发现出现在文本中的抽象主题。这种方法突显了文本体系的潜在结构,揭示了可能不会立即显现的主题和模式。 为了分析大规模文档集合(例如数千条推文)的内容,主题建模算法依赖于统计技术来发现文本中的模式。这些算法通过检查文档中的词频和词共现来将文档分类为少数几个主题。因此,内容看起来更有组织和可理解,更容易识别数据中的潜在主题和模式。 潜在狄利克雷分配(LDA)、潜在语义分析和非负矩阵分解是一些常规的主题建模技术。然而,本博文使用BERT进行主题建模。 了解更多:使用潜在狄利克雷分配(LDA)进行主题建模 学习目标 以下是使用BERT进行主题建模的学习目标,以项目符号形式给出: 了解主题建模的基础知识以及在自然语言处理中的应用。 了解BERT的基础知识以及它如何创建文档嵌入。 对文本数据进行预处理,以便为BERT模型准备数据。 利用[CLS]标记从BERT的输出中提取文档嵌入。 使用聚类方法(如K均值)对相关材料进行分组并找到潜在主题。 利用合适的度量标准评估生成的主题的质量。 通过这个学习目标的帮助,参与者将获得使用BERT进行主题建模的实践经验。利用这些知识,他们将能够分析和提取大规模文本数据中隐藏的主题。 本文是数据科学博文马拉松的一部分。 加载数据 这是澳大利亚广播公司八年来在Kaggle上提供的可访问内容。它包含两个重要的列:publish_date:文章的发布日期,格式为yyyyMMdd。headline_text是标题文本的英文翻译。这是主题模型将使用的知识。 import pandas as pd # 读取数据集 data =…
Leave a Comment