Press "Enter" to skip to content

76 search results for "Falcon LLM"

使用@remote装饰器在Amazon SageMaker上微调Falcon 7B和其他LLMs

今天,生成式人工智能模型涵盖了各种任务,包括文本摘要、问答以及图像和视频生成为了提高输出的质量,采用了一些方法,如N-Short学习、提示工程、检索增强生成(RAG)和微调微调允许您调整这些生成式人工智能模型,以在您的领域特定的任务上实现更好的性能

Leave a Comment

使用QLoRA在Amazon SageMaker Studio笔记本上交互式地微调Falcon-40B和其他LLMs

对大型语言模型(LLM)进行微调可以让您调整开源基础模型,以在特定领域的任务中实现更好的性能在本文中,我们讨论了使用Amazon SageMaker笔记本进行微调最先进的开源模型的优势我们利用了Hugging Face的参数高效微调(PEFT)库和通过bitsandbytes支持交互式微调的量化技术

Leave a Comment

使用Amazon SageMaker Clarify和MLOps服務,以大規模操作化LLM評估

在过去的几年中,大型语言模型(LLMs)因其杰出的能力而崭露头角,能够以前所未有的熟练度理解、生成和操纵文本它们的潜在应用领域从对话代理人到内容生成和信息检索,承诺着彻底改变所有行业然而,在确保负责任和…

Leave a Comment

使用新的Amazon SageMaker容器提升LLMs的推理性能

今天,Amazon SageMaker推出了Large Model Inference (LMI) Deep Learning Containers (DLCs)的新版本(0.25.0),并新增了对NVIDIA的TensorRT-LLM Library的支持借助这些升级,您可以轻松访问最先进的工具,优化SageMaker上的大型语言模型(LLMs),并获得价格性能优势——Amazon SageMaker LMI TensorRT-LLM DLC将延迟降低了33% […]

Leave a Comment

在Python中进行结构化LLM输出存储和解析

介绍 生成AI目前在全球范围内广泛使用。大型语言模型能够理解提供的文本并基于此生成文本的能力,已经导致了从聊天机器人到文本分析器的众多应用。但是,这些大型语言模型通常以非结构化的方式生成文本。有时候,我们希望LLM生成的输出以结构化的形式呈现,比如JSON(JavaScript对象表示)格式。假设我们正在使用LLM来分析社交媒体帖子,并且我们需要LLM生成的输出在代码中本身作为JSON/Python变量,以执行其他任务。通过Prompt Engineering可以实现这一点,但需要花费大量时间来调整提示。为了解决这个问题,LangChain引入了输出解析功能,可以用于将LLM的输出转换为结构化格式。 学习目标 解释大型语言模型生成的输出 使用Pydantic创建自定义数据结构 了解提示模板的重要性,并生成一个格式化LLM输出的模板 学习如何使用LangChain创建LLM输出的格式化指令 了解如何将JSON数据解析为Pydantic对象 本文是数据科学博文马拉松的一部分。 LangChain和输出解析是什么? LangChain是一个Python库,可以让您在短时间内构建与大型语言模型相结合的应用程序。它支持多种模型,包括OpenAI GPT LLM、Google的PaLM,甚至是Hugging Face中提供的开源模型,如Falcon、Llama等等。借助LangChain,定制大型语言模型的提示变得轻而易举,它还配备了一个开箱即用的向量存储库,可以存储输入和输出的嵌入。因此,可以使用它来创建在几分钟内查询任何文档的应用程序。 LangChain使大型语言模型能够通过代理从互联网上获取信息。它还提供了输出解析器,允许我们从大型语言模型生成的输出中结构化数据。LangChain提供了不同的输出解析器,如列表解析器、日期时间解析器、枚举解析器等等。在本文中,我们将介绍JSON解析器,它可以将LLM生成的输出解析为JSON格式。下面,我们可以观察到一个典型的流程,即将LLM输出解析为Pydantic对象,从而创建出一组可供Python变量直接使用的数据。 入门-设置模型 在本节中,我们将使用LangChain来设置模型。在本文中,我们将始终使用PaLM作为我们的大型语言模型。我们将使用Google Colab作为我们的环境。您可以将PaLM替换为任何其他大型语言模型。我们将首先导入所需的模块。 !pip install google-generativeai langchain 这将下载LangChain库和与PaLM模型一起使用的google-generativeai库。 需要langchain库来创建自定义提示并解析大型语言模型生成的输出。…

Leave a Comment

了解亚马逊药店如何使用亚马逊SageMaker创建了他们基于LLM的聊天机器人

亚马逊药房是亚马逊网站上的一家全方位药房,提供透明的定价、临床和客户支持,以及免费将药品送到您的门口客户服务代理在快速准确地获取与药房信息相关的信息方面起着至关重要的作用,包括处方澄清和转移状态、订单和发药详细信息以及患者信息

Leave a Comment

「搭建大型语言模型与业务之间的桥梁:LLMops」

像OpenAI的GPT-3或其继任者GPT-4这样的LLM的基础在于深度学习,它是人工智能的一个子集,利用三层或更多层的神经网络这些模型通过训练利用广泛的数据集,涵盖了互联网文本的广泛领域通过训练,LLM学会了预测序列中的下一个单词,给定…

Leave a Comment

如何使用向量数据库构建LLM应用程序?

介绍 在人工智能领域,大型语言模型(LLMs)和生成型AI模型,如OpenAI的GPT-4、Anthropic的Claude 2、Meta的Llama、Falcon、Google的Palm等,已经彻底改变了我们解决问题的方式。LLMs使用深度学习技术来执行自然语言处理任务。本文将教你如何使用向量数据库构建LLM应用程序。你可能已经与类似亚马逊客服或Flipkart决策助手的聊天机器人进行过交互。它们能生成类似人类的文本,并提供几乎与现实对话无异的交互用户体验。然而,这些LLMs需要进行优化,以产生高度相关和具体的结果,才能真正对特定的使用案例有用。 例如,如果你询问亚马逊客服应用程序:“如何在Android应用中更改语言?”可能没有经过训练来处理这个确切的文本,因此可能无法回答。这就是向量数据库发挥作用的时候。向量数据库将领域文本(在这种情况下是帮助文档)和所有用户的过去查询(包括订单历史等)存储为数值嵌入,并提供实时查找相似向量的功能。在这种情况下,它将这个查询编码成一个数值向量,并使用它在其向量数据库中执行相似性搜索,找到最相似的邻居。有了这个帮助,聊天机器人可以正确地指导用户进入亚马逊应用程序的“更改语言偏好设置”部分。 学习目标 LLMs是如何工作的,它们的限制是什么,为什么它们需要向量数据库? 嵌入模型的介绍以及如何在应用程序中对其进行编码和使用。 学习什么是向量数据库,以及它们如何成为LLM应用程序架构的一部分。 学习如何使用向量数据库和tensorflow编写LLM/生成型AI应用程序。 本文是数据科学博客马拉松的一部分。 什么是LLMs? 大型语言模型(LLMs)是基础的机器学习模型,使用深度学习算法处理和理解自然语言。这些模型被训练使用大量的文本数据来学习语言中的模式和实体关系。LLMs可以执行许多类型的语言任务,例如翻译语言、分析情感、聊天机器人对话等。它们能够理解复杂的文本数据,识别实体及其之间的关系,并生成连贯且语法正确的新文本。 在这里阅读更多关于LLMs的信息。 LLMs是如何工作的? LLMs使用大量数据进行训练,通常是以太字节,甚至是拍字节,拥有数十亿或数万亿个参数,使其能够根据用户的提示或查询进行预测和生成相关的响应。它们通过词嵌入、自注意层和前馈网络处理输入数据,生成有意义的文本。你可以在这里阅读更多关于LLM架构的信息。 LLMs的限制 虽然LLMs似乎以相当高的准确性生成响应,甚至在许多标准化测试中比人类表现得更好,但这些模型仍然有限制。首先,它们完全依赖于它们的训练数据来构建推理,因此可能在数据中缺乏特定或当前的信息。这导致模型生成不正确或不寻常的响应,也被称为“幻觉”。有持续的努力在减轻这个问题。其次,模型可能无法按照用户的期望行为或响应。 为了解决这个问题,向量数据库和嵌入模型通过为用户寻找信息提供了额外的类似性查询(文本、图像、视频等)。以下是一个例子,LLMs无法回答用户询问的信息,而是依靠向量数据库找到该信息。 LLM和向量数据库 大型语言模型(LLM)被广泛应用于电子商务、旅游、搜索、内容创作和金融等行业的许多部分。这些模型依赖于一种相对较新的数据库类型,称为向量数据库,它以一种称为嵌入的二进制表示存储文本、图像、视频和其他数据的数值表示。本节介绍了向量数据库和嵌入的基本原理,更重要的是介绍了如何将它们与LLM应用程序集成使用。 向量数据库是一种使用高维空间存储和搜索嵌入的数据库。这些向量是数据特征或属性的数值表示。使用计算向量在高维空间中的距离或相似度的算法,向量数据库可以快速高效地检索相似的数据。与传统的基于标量的数据库不同,后者将数据存储在行或列中,并使用精确匹配或基于关键词的搜索方法,向量数据库的操作方式不同。它们使用向量数据库来在非常短的时间内(毫秒级别)搜索和比较大量向量,使用近似最近邻(ANN)等技术。 嵌入的简要教程 AI模型通过将原始数据如文本、视频和图像输入到诸如word2vec之类的向量嵌入库中,生成嵌入。在AI和机器学习的背景下,这些特征代表数据的不同维度,这些维度对于理解模式、关系和底层结构至关重要。 下面是使用word2vec生成词嵌入的示例。 1.…

Leave a Comment

LLM精细调校与PEFT技术

介绍 语言模型,简称LLM,已经席卷了自然语言处理领域。它们是强大的人工智能系统,旨在生成类似于人类的文本、理解和响应自然语言输入。本质上,它们旨在模仿人类的语言理解和生成。让我们开始一段旅程,了解微调LLM的复杂性,并探索改变领域的创新PEFT(Prompt Engineering and Fine Tuning)技术。 学习目标: 理解语言模型中微调的概念。 理解PEFT技术及其重要性。 探索有效系数选择的技术。 理解PEFT技术 首先,让我们解读这个缩略词——PEFT代表参数效率微调。但在这个背景下,参数效率意味着什么,为什么它很重要呢? 在机器学习中,模型实质上是由数以万计的系数或权重构成的复杂数学方程。这些系数决定模型的行为,并使其能够从数据中学习。当我们训练一个机器学习模型时,我们调整这些系数以最小化误差并进行准确的预测。对于可以拥有数十亿参数的LLM来说,在训练期间改变所有参数可能会消耗大量的计算资源和内存。 这就是微调的作用。微调是将已训练好的模型进行微调,以适应特定任务的过程。它假设模型已经具备了对语言的基本理解,并专注于使其在特定领域表现出色。 作为微调的子集,PEFT严肃地考虑了参数效率。与其改变模型的所有系数,PEFT选择其中的一个子集,从而大大减少了计算和内存需求。当训练大型模型(如Falcon 7B)时,这种方法特别有用。 训练、微调和提示工程:主要区别 在深入研究PEFT之前,让我们澄清训练、微调和提示工程之间的区别。这些术语经常被互换使用,但在LLM的背景下具有特定的含义。 训练:当一个模型从头开始创建时,它经历了训练。这涉及调整模型的所有系数或权重,以学习数据中的模式和关系。这就像是将模型教授语言的基础知识。 微调:微调假设模型已经具备了对语言的基本理解(通过训练实现)。它涉及有针对性地进行调整,以使模型适应特定的任务或领域。将其视为对受过良好教育的模型进行细化,以实现特定工作,如回答问题或生成文本。 提示工程:提示工程涉及制作输入提示或问题,引导LLM提供所需的输出。它是根据您的需求定制与模型的交互方式。 PEFT在微调阶段起着重要作用,我们有选择地修改模型的系数,以提高其在特定任务上的性能。 探索LoRA和QLoRA用于系数选择 现在,让我们深入了解PEFT的核心,并了解如何高效选择系数的子集。两种技术,LoRA(低秩采用)和QLoRA(量化+低秩采用),用于实现这一目的。 LoRA(低秩采用):LoRA是一种技术,它认识到模型中的并非所有系数都同等重要。它利用了一些权重对模型产生的影响比其他权重更大的事实。在LoRA中,通过因式分解将大型权重矩阵分为两个较小的矩阵。因子“R”决定选择了多少个系数。通过选择较小的“R”,我们减少了需要进行调整的系数数量,使微调过程更高效。…

Leave a Comment

使用Amazon SageMaker JumpStart用Falcon创建一个HCLS文档摘要应用程序

健康保健和生命科学(HCLS)的客户正在采用生成式人工智能作为一种工具,以从他们的数据中获得更多的价值使用情况包括文档总结,以帮助读者聚焦文档的关键点,并将非结构化文本转化为标准化格式,以突出重要属性由于独特的数据格式和严格的监管要求,客户们正在……

Leave a Comment

认识MAmmoTH:一系列专门针对一般数学问题解决而设计的开源大型语言模型(LLM)

现代大型语言模型(LLM)在很大程度上依赖于数学推理,这是本文的主要焦点。尽管在这个领域取得了一些进展,但封闭源模型(如GPT-4、PaLM-2和Claude 2)在GSM8K和MATH等流行的数学推理基准中占据主导地位,而开源模型(如Llama、Falcon和OPT)则远远落后。 解决这个差距的两种主要方法是: 持续的预训练,例如Galactica和MINERVA,现在它正在使用链接到数学的超过1000亿个网页数据上训练LLM。虽然计算代价高昂,但这种方法可以提高模型在科学推理方面的能力。 使用每个数据集独特的训练数据,使用拒绝采样微调(RFT)和WizardMath等微调方法来完善LLM。虽然这些方法在其领域内是有效的,但在需要推理的其他数学领域中无法转移。 滑铁卢大学、俄亥俄州立大学、香港科技大学、爱丁堡大学和IN.AI最近的研究探索了一种轻量级但具有普适性的数学指令调整技术,以提高LLM在数学推理能力上的表现(即不仅仅是微调任务)。 目前的方法在很大程度上依赖于思维链(CoT)方法,描述了它们如何以自然语言步骤解决数学问题。但是,当涉及到计算精度和复杂的数学或算法推理方法时,这种方法表现不佳。基于代码的技术,如PoT和PAL,使用第三方资源来简化数学求解过程。 该方法建议将计算密集型任务(例如使用sympy解二次方程或使用numpy计算矩阵特征值)委托给一个独立的Python解释器。另一方面,PoT在处理更抽象的推理场景(如常识推理、形式逻辑和抽象代数)时具有一些局限性,特别是在缺乏现有API的情况下。 为了充分利用CoT和PoT的优势,该团队提出了一个名为MathInstruct的数学混合指令调整数据集。它的主要特点包括: 全面覆盖各种数学领域和复杂程度 混合CoT和PoT的解释。 六个全新选择的和七个现有的数据集为MathInstruct的数学解释提供了基础。从建模的角度来看,研究人员训练和评估了约50个独特模型,基线范围从7B到70B,以了解各种输入输出格式和数据源的影响。 结果表明,这些模型在数学通用性方面表现出色。 研究人员在各种数据集上对MAmmoTH进行了广泛测试,从领域内(IND)到领域外(OOD),例如GSM8K、MATH、AQuA-RAT和NumGLUE。这些模型显著提高了开源LLM在数学推理上的效率,并且在OOD数据集上比最先进的方法具有更好的泛化能力。在流行的竞赛级别MATH数据集上,7B模型的结果超过了WizardMath(开源MATH SoTA)的3.5倍(35.2%对10.7%),而34B MAmmoTH-Coder(在Code Llama上进行了微调)的结果超过了GPT-4(使用CoT)。这些模型中的MAmmoTH和MAmmoTH-Coder都显著提高了以前可用的开源模型的准确性。

Leave a Comment

无需编码,训练自己的LLM

介绍 生成式人工智能是一个引人入胜的领域,它承诺改变我们与技术互动和生成内容的方式,并已席卷全球。在本文中,我们将探索大型语言模型(LLMs)的迷人领域,它们的构建模块,封闭源LLMs带来的挑战以及开源模型的出现。我们还将深入探讨H2O的LLM生态系统,包括h2oGPT和LLM DataStudio等工具和框架,使个人能够在没有深入编码技能的情况下训练LLMs。 学习目标: 了解大型语言模型(LLMs)的生成式人工智能的概念和应用。 认识封闭源LLMs的挑战和开源模型的优势。 探索H2O的LLM生态系统,以实现无需深入编码技能的人工智能训练。 LLMs的构建模块:基础模型和微调 在我们深入研究LLMs的细节之前,让我们先了解生成式人工智能的概念。在以预测性人工智能为主,基于历史数据模式进行预测的同时,生成式人工智能则颠覆了这一模式。它赋予了机器从现有数据集中创建新信息的能力。 想象一下,一个机器学习模型不仅能够预测,还能生成文本、概括内容、分类信息等,这一切都来自于一个模型。这就是大型语言模型(LLMs)的作用。 LLMs采用多步骤的过程,首先是一个基础模型。这个模型需要一个庞大的数据集进行训练,通常是以TB或PB为单位的数据。这些基础模型通过预测序列中的下一个单词来学习,目的是理解数据内部的模式。 一旦建立了基础模型,下一步是微调。在此阶段,使用经过精心策划的数据集进行有监督微调,将模型塑造成所需的行为。这可能涉及训练模型执行特定任务,例如多选题选择、分类等。 第三步是强化学习与人类反馈,进一步提升模型的性能。通过使用基于人类反馈的奖励模型,模型微调其预测,使其更加贴近人类的偏好。这有助于减少噪音并提高响应的质量。 这个过程中的每一步都有助于提高模型的性能并减少不确定性。值得注意的是,基础模型、数据集和微调策略的选择取决于具体的用例。 封闭源LLMs的挑战和开源模型的崛起 封闭源LLMs,如ChatGPT、Google Bard等,已经证明了它们的有效性。然而,它们也带来了一些挑战。这些挑战包括数据隐私问题、定制和控制能力有限、高运营成本以及偶尔的不可用性。 组织和研究人员已经认识到需要更易于访问和定制的LLMs。为此,他们开始开发开源模型。这些模型具有成本效益、灵活性,并可以根据特定要求进行定制。它们也消除了将敏感数据发送到外部服务器的担忧。 开源LLMs使用户能够训练自己的模型并访问算法的内部工作原理。这个开放的生态系统提供了更多的控制和透明度,为各种应用提供了一个有希望的解决方案。 H2O的LLM生态系统:无需编码的LLM训练工具和框架 H2O是机器学习领域的一家重要参与者,他们开发了一个强大的LLM生态系统。他们的工具和框架可以在无需深入编码专业知识的情况下进行LLM训练。让我们来探索其中的一些组件。 h2oGPT h2oGPT是一个可以在自己的数据上进行训练的经过微调的LLM。最棒的部分是,它完全免费使用。通过h2oGPT,您可以尝试使用LLMs,甚至商业应用。这个开源模型使您能够探索LLMs的能力,而无需面对财务障碍。 部署工具 H2O.ai…

Leave a Comment

Ray与NVIDIA AI携手合作,帮助开发者构建、调优、训练和扩展生产LLM

大型语言模型的开发即将达到超音速速度,这要归功于NVIDIA和Anyscale的合作。 在其年度Ray Summit开发者大会上,Anyscale——快速增长的可扩展计算的开源统一计算框架背后的公司——今天宣布将NVIDIA AI引入Ray开源和Anyscale平台。它还将集成到Anyscale Endpoints中,这是一项今天宣布的新服务,可方便应用开发人员使用最流行的开源模型在其应用程序中以具有成本效益的方式嵌入LLMs。 这些集成可以显著加速生成式AI的开发和效率,同时提高生产AI的安全性,从专有的LLMs到诸如Code Llama、Falcon、Llama 2、SDXL等开源模型。 开发人员可以灵活选择使用Ray部署开源NVIDIA软件,或选择在Anyscale平台上运行NVIDIA AI企业软件,以进行全面支持和安全的生产部署。 Ray和Anyscale平台被广泛用于开发人员构建用于生成式AI应用程序的先进LLMs,这些应用程序可以驱动智能聊天机器人、编码协助和强大的搜索和摘要工具。 NVIDIA和Anyscale提供速度、节省和效率 生成式AI应用引起了全球企业的关注。调整、增强和运行LLMs需要大量的投资和专业知识。NVIDIA和Anyscale共同努力,可以通过多种应用集成帮助降低生成式AI开发和部署的成本和复杂性。 上周宣布的新的开源软件NVIDIA TensorRT-LLM将支持Anyscale的产品,以提高LLM的性能和效率,从而实现成本节约。在NVIDIA AI企业软件平台中也得到支持,Tensor-RT LLM可自动扩展推理以在多个GPU上并行运行模型,与上一代GPU相比,可以在运行NVIDIA H100 Tensor Core GPU时提供高达8倍的性能。 TensorRT-LLM可以自动扩展推理以在多个GPU上并行运行模型,并包括用于各种流行LLM模型的自定义GPU内核和优化。它还实现了NVIDIA H100 Tensor Core…

Leave a Comment

ChatGPT的Enigma PUMA是一种AI方法,提出了一种快速且安全的LLM推理方式

大型语言模型(LLMs)在人工智能领域引发了一场革命。ChatGPT的发布为LLMs时代点燃了火花,从那时起,我们见证了它们不断改进。这些模型通过大量的数据变得可能,并以其能力给我们留下了深刻的印象,从掌握语言理解到简化复杂任务。 ChatGPT的替代方案有很多,它们每天都在变得越来越好,甚至在某些任务上超越了ChatGPT。LLaMa、Claudia、Falcon等等;新的LLM模型正向ChatGPT的宝座发起冲击。 然而,毫无疑问,ChatGPT仍然是迄今为止最受欢迎的LLM。你最喜欢的基于AI的应用很有可能只是一个处理连接的ChatGPT封装器。但是,如果我们退后一步思考安全问题,它真的是私密且安全的吗?OpenAI确保保护API数据隐私是他们非常关心的事情,但他们同时面临着许多诉讼。即使他们非常努力地保护模型使用的隐私和安全性,这些模型可能过于强大而无法控制。 那么,我们如何确保在使用LLMs的同时不会出现隐私和安全问题?如何利用这些模型的能力而不损害敏感数据?让我们来认识一下PUMA。 PUMA 是一个旨在实现安全高效评估Transformer模型的框架,同时保护您数据的纯洁性。它将安全多方计算(MPC)与高效的Transformer推理相结合。 在其核心,PUMA 引入了一种新颖的技术,用于近似Transformer模型内的复杂非线性函数,如GeLU和Softmax。这些近似是为了保持准确性,同时显著提高效率。与可能牺牲性能或导致复杂部署策略的先前方法不同,PUMA的方法平衡了两个世界-确保准确结果的同时,保持了实际应用所需的效率。 PUMA 引入了三个关键实体:模型所有者、客户端和计算方。每个实体在安全推理过程中都发挥着关键作用。 模型所有者提供经过训练的Transformer模型,而客户端贡献输入数据并接收推理结果。计算方集体执行安全计算协议,确保数据和模型权重在整个过程中得到安全保护。PUMA推理过程的基本原则是保持输入数据和权重的机密性,保护涉及的实体的隐私。 安全嵌入是安全推理过程的一个基本方面,传统上涉及使用令牌标识符生成一位热向量。然而,PUMA 提出了一种与Transformer模型的标准工作流程密切相符的安全嵌入设计。这种简化的方法确保安全措施不会干扰模型的固有架构,简化了在实际应用中部署安全模型。 PUMA中使用的安全GeLU和LayerNorm协议的概述。来源:https://arxiv.org/pdf/2307.12533.pdf 此外,在安全推理中,近似复杂函数(如GeLU和Softmax)以平衡计算效率和准确性的方式是一个重大挑战。PUMA 通过设计更准确的近似方法,根据这些函数的特性进行优化,解决了这个问题。通过利用这些函数的特定特征,PUMA 显著提高了近似的精度,同时优化了运行时间和通信成本。 最后,LayerNorm作为Transformer模型中的关键操作,由于除法平方根公式,它在安全推理中带来了独特的挑战。PUMA 通过巧妙地重新定义使用安全协议的操作,确保LayerNorm的计算既安全又高效。 PUMA 最重要的特点之一是它的无缝集成。该框架可以在不需要进行重大模型架构修改的情况下,实现端到端的安全推理,这意味着您可以轻松利用预训练的Transformer模型。无论是从Hugging Face还是其他来源下载的语言模型,PUMA 都能简化操作。它与原始工作流程相一致,不需要复杂的重新训练或修改。

Leave a Comment

Meta AI的鲸鱼!通过指导反向翻译实现LLMs的自对齐,引起轰动!

大型语言模型(LLMs)展现出出色的泛化能力,如上下文学习和思维链推理。为了使LLMs能够遵循自然语言指令并完成现实世界的任务,研究人员一直在探索LLMs的指令调整方法。这是通过对模型进行微调,在各种函数上使用人工注释的提示和反馈或使用公共基准和数据集进行监督微调,以及手动或自动生成的指令进行数据增强。最近的研究强调了人工注释数据质量的重要性。然而,发现注释遵循此类质量数据集的指令很难扩展。 这个解决方案涉及到与LLM的自我对齐,即利用模型来改进自身,并使其响应与期望的行为(如模型编写的反馈、批评、解释等)保持一致。Meta AI的研究人员引入了自我对齐与指令反向翻译。基本思想是通过大型语言模型自动为Web文本标注相应的指令。 自训练方法假设可以访问基础语言模型、一组未标记的示例(例如Web语料库)和少量种子数据。这种方法的第一个关键假设是,这些大量人工编写的文本中的某些部分将对某些用户指令进行黄金生成。第二个假设是我们可以预测这些响应的指令,这可以用来使用高质量的示例对训练一个遵循指令的模型。 整个指令反向翻译可以分为以下步骤: 自我增强:为未标记的数据(即Web语料库)生成“好的指令”,以产生(指令,输出)对的训练数据,用于使用大型语言模型Meta AI(LLaMA)进行指令调整 自我创建:对使用LLaMA生成的数据进行评估 然后,使用改进的模型对LLaMA进行微调,并迭代该过程。结果训练的基于Llama的指令反向翻译模型被称为“Humpback”(因为鲸鱼相对于骆驼具有大规模的特性)。与Claude、Guanaco、Falcon-Instruct、LIMA等现有的非蒸馏模型相比,“Humpback”在Alpaca排行榜上表现出色。 当前方法的缺点是增强数据是从Web语料库中获取的,因此微调的模型可能会强调Web数据的偏见。总之,这种方法保证我们永远不会用尽训练数据,进一步为对大型语言模型进行指令跟随的微调提供了可靠的可扩展方法。未来的工作将通过考虑更大的未标记语料库来进一步扩展这种方法,这可能会带来进一步的收益。

Leave a Comment

在Amazon SageMaker上使用LLMs实现智能视频和音频问答,并提供多语言支持

在日益数字化的世界中,数字资产是企业产品、服务、文化和品牌身份的重要视觉表现数字资产与记录的用户行为一起,可以通过提供互动和个性化体验来促进客户参与,使公司能够与目标受众更深入地连接高效地发现和搜索特定的数字资产[…]

Leave a Comment

使用Haystack流水线和Amazon SageMaker JumpStart构建适用于企业搜索的生产就绪的生成式AI应用程序,使用LLMs

在这篇文章中,我们展示了如何使用Haystack pipelines和来自Amazon SageMaker JumpStart和Amazon OpenSearch Service的Falcon-40b-instruct模型,构建一个端到端的生成式AI应用程序,用于企业搜索,并加以检索增强生成(RAG)

Leave a Comment

介绍适用于Amazon SageMaker的Hugging Face LLM推理容器

这是一个关于如何使用新的Hugging Face LLM Inference Container将开源LLMs(如BLOOM)部署到Amazon SageMaker进行推理的示例。我们将部署12B Pythia Open Assistant Model,这是一个使用Open Assistant数据集训练的开源Chat LLM。 示例内容包括: 设置开发环境 获取新的Hugging Face LLM DLC 将Open Assistant 12B部署到Amazon SageMaker 运行推理并与我们的模型聊天 创建由Amazon SageMaker支持的Gradio…

Leave a Comment

Open LLM排行榜出了什么问题?

最近,在发布了Falcon 🦅并将其添加到Open LLM Leaderboard之后,Twitter上引起了一场有趣的讨论,Open LLM Leaderboard是一个比较开放访问的大型语言模型的公共排行榜。 讨论的焦点是排行榜上显示的四个评估之一:用于测量大规模多任务语言理解的基准测试(简称MMLU)。 社区对于排行榜上当前顶尖模型LLaMA的MMLU评估数据与LLaMa论文中的数据明显相差很大感到惊讶。 因此,我们决定深入研究并弄清楚发生了什么以及如何修复🕳🐇。 在我们的探索过程中,我们与LLaMA评估合作的伟大的@javier-m以及Falcon团队的了不起的@slippylolo进行了讨论。话虽如此,下面的所有错误都应归因于我们而不是他们! 在这段与我们共同的旅程中,您将学到很多关于如何在单个评估中评估模型以及是否相信您在网上和论文中看到的数字的方法。 准备好了吗?系好安全带,我们要起飞了🚀。 什么是Open LLM Leaderboard? 首先,注意Open LLM Leaderboard实际上只是一个包装器,运行了Eleuther AI LM Evaluation Harness这个开源基准测试库,该库由EleutherAI非盈利人工智能研究实验室创建,该实验室以创建The Pile、训练GPT-J、GPT-Neo-X 20B和Pythia而闻名。这个团队在人工智能领域有着严肃的资质! 这个包装器在Hugging…

Leave a Comment

Can't find what you're looking for? Try refining your search: