Press "Enter" to skip to content

Tag: training

争议环绕:Grok使用OpenAI代码进行训练

埃隆·马斯克(Elon Musk)最新的创业项目是基于生成式人工智能的聊天机器人Grok。然而,该机器人卷入了争议,有指控称它在训练过程中使用了OpenAI的代码。这起争议给埃隆·马斯克、OpenAI和OpenAI的现任首席执行官Sam Altman之间复杂的历史增添了新的层面。 划定的指控 最近的声明暗示Grok可能无意间在OpenAI的代码库上进行了训练。当用户Jax Winterbourne遇到与OpenAI的ChatGPT类似的Grok的不寻常回复时,引发了这种猜测。该用户对xAI可能在Grok的训练中使用了OpenAI的代码表示担忧。 xAI的解释 作为对指控的回应,与xAI有关的Igor Babuschkin澄清了这个问题是由于训练Grok时使用了大量Web数据引起的。Babuschkin解释说,训练过程无意间捕获到了ChatGPT的输出结果。虽然承认这个问题并不常见,但他向用户保证,未来的Grok版本将不会遇到这个问题,并强调他们在Grok的开发过程中未使用任何OpenAI的代码。 埃隆·马斯克的反驳 埃隆·马斯克对Twitter上的指控作出了迅速的回应。马斯克否认了这些指控,表示Grok的回复来自于训练中的广泛数据抓取。以马斯克的特色回应,他反驳道:“嗯,儿子,既然你从这个平台上抓取了所有数据进行训练,那你应该知道。” 对Grok与ChatGPT的近距离观察 对Grok和ChatGPT的比较揭示了它们的独特特性。Grok以其通过X平台实时获取信息的能力脱颖而出,这使其相对于最初缺乏这种功能的ChatGPT具有明显优势。然而,这场争议也引发了关于Grok训练数据来源的质疑。 xAI的合作与未来展望 xAI不仅是埃隆·马斯克的心血结晶,同时也得到了拥有来自Google的DeepMind和微软的经验的团队的支持,它已经扩大了与特斯拉和其他各种公司的合作范围。最近与Oracle达成合同以利用其云技术的揭示更加突显了xAI对推进人工智能能力的承诺。 我们的观点 在这些指控和反驳的背景下,用户必须了解人工智能发展的复杂性。尽管围绕Grok训练数据的争议令人担忧,但它也凸显了在广阔的互联网领域确保数据纯净性所面临的挑战。随着技术的发展,人工智能开发者需要及时解决和纠正这类问题变得至关重要。

Leave a Comment

Jio的Haptik推出业务AI工具

周三,印度人工智能初创公司Haptik,作为Reliance Jio Infocomm的一部分,推出了一个专门的生成型人工智能平台,旨在帮助企业客户构建虚拟助手和后台信息支持。该平台名为“Contakt”,已经进行了初步试点部署,并表示有望在未来扩展。随着技术的不断进步,Contakt成为一个关键性解决方案,满足了对以业务为中心的人工智能解决方案不断增长的需求。 Contakt的强大功能 源于对先进业务解决方案日益增长的需求,Haptik CEO Aakrit Vaish揭示了Contakt背后的灵感。该平台目前正在与Upstox、Tira、星巴克和印度商学院等知名公司进行严格测试。 Contakt的独特之处在于其能够通过聊天界面接收文本、音频和图像查询,利用OpenAI的GPT-3.5和GPT-4模型的强大能力。这个多功能平台通过协作功能实现了自助选项和自动化例行任务,并提高了代理人的工作效率。据Haptik的CTO Swapan Rajdev表示,Contakt可以提高机器人性能高达15%,减少约40%的人工智能培训工作量,并提高客户满意度20%。 品牌定制LLM Contakt赋予每个品牌培养定制的大规模语言模型(LLM)助手的能力,确保在各种接触点上实现端到端的客户体验。这个生成型人工智能助手发挥着多重角色,提供售前对话引导、客户自助、代理人协同生产力功能,以及智能分析来跟踪和优化关键指标。Vaish强调,OpenAI的LLMs,特别是GPT-3.5和GPT-4模型,将Contakt置于市场竞争对手之上,证明了其默认部署的合理性。 Reliance Retail的AI飞跃 Jio Haptik透露了另一个计划。Reliance Retail打算在Tira电子商务网站上引入一个生成型人工智能美容顾问聊天机器人。Reliance Retail的首席产品技术官Anand Thakur预计会实现这一整合。他希望将类似ChatGPT的能力融入到网上销售助手中,以简化购买流程,提高整体客户体验。Thakur将此举视为重要的进展,它在塑造零售技术未来方面发挥关键作用,为每个Tira客户提供个性化体验。 我们的观点 当我们在人工智能不断进化的领域中航行时,Contakt成为了一个改变游戏规则的因素。Haptik巧妙地集成了OpenAI强大的语言模型,将Contakt定位为市场上的领先者。这个承诺在机器人性能、人工智能培训效率和客户满意度方面无与伦比。Contakt的推出标志着人工智能与业务运营融合的重要里程碑。随着行业的发展,Haptik和Reliance Jio的发展轨迹进一步巩固了人工智能的角色。它是塑造商业和客户更高效个性化未来的动力。

Leave a Comment

“Rasa-驱动的 Chatbot:无缝 Confluence 和 Jira 集成指南”

介绍 在近年来,聊天机器人在人工智能的推动下发展成了功能复杂的对话代理工具。本指南深入探讨了构建一个高级的Rasa-powered聊天机器人的过程,该机器人专门针对与Confluence页面和Jira工单相关的用户查询进行了定制。将Confluence和Jira集成起来带来了很多好处,可以简化信息检索,并促进协同工作环境的形成。Confluence有助于协同文档编写,而Jira则是一个强大的项目管理工具。通过创建与这些平台无缝集成的聊天机器人,可以提高可访问性,优化团队进行内容协作和项目管理的效率。 学习目标 在本文中,您将学习到: Rasa项目设置:学习如何启动一个Rasa项目,为高级聊天机器人的开发奠定基础。 NLU意图定义:定义Confluence和Jira查询的特定自然语言理解(NLU)意图,提高聊天机器人的理解能力。 自定义动作开发:创建基于Python的自定义动作,与Confluence和Jira的API进行交互,从而扩展功能。 模型训练和测试:了解模型训练过程,确保聊天机器人的泛化能力,并进行迭代测试以持续改进。 本文是作为数据科学博文的一部分发表的。 基础概念 Rasa Rasa是一个开源的对话人工智能平台,可以帮助开发人员构建强大的上下文感知的聊天机器人。Rasa利用机器学习来理解并响应复杂的用户输入,不仅仅是简单的基于规则的系统。其自然语言处理能力和对话管理工具使得Rasa成为创建智能对话代理的多功能解决方案。 Jira Jira是由Atlassian开发的一款著名的项目管理和问题追踪工具。在敏捷软件开发中被广泛使用,Jira通过组织任务、追踪问题和使团队的工作流程变得更加高效来促进协作。其丰富的功能,如可自定义的工作流和实时协作,有助于在开发团队和项目经理中的广泛使用。Jira的丰富的RESTful API允许与外部工具和应用的无缝集成,实现实时数据交换和自动化。 Confluence Confluence同样是由Atlassian开发的一个协同平台,用于组织内的高效文档编写、知识共享和团队合作。它是一个集中化的空间,供团队创建、共享和协作于内容,使其成为项目文档、会议记录和一般知识管理的重要工具。实时协同编辑可以让多个团队成员同时在同一文档上进行工作。通过Confluence强大的搜索能力,可以高效地找到相关信息。Confluence与Jira等Atlassian产品无缝集成,创造了一个统一的项目管理和文档生态系统。 聊天机器人 聊天机器人已成为现代数字互动的重要组成部分,能够提供即时和个性化的响应。由人工智能驱动,聊天机器人能够解释用户的输入、理解上下文,并提供相关信息或执行操作。从客户支持到流程自动化,聊天机器人改变了企业与用户互动的方式,提高了效率和用户体验。聊天机器人利用自然语言处理来识别用户意图,使其能够以上下文相关和准确的方式响应。在Rasa的上下文中,自定义动作是Python函数,扩展了聊天机器人的功能,使其能够执行除简单意图识别之外的任务。 先决条件 在我们深入开发过程之前,请确保您拥有必要的工具和访问权限: Python和虚拟环境 确保您已安装Python。使用以下命令创建并激活虚拟环境: # 命令提示符(Windows)或终端(macOS/Linux)…

Leave a Comment

令人震惊的现实:ChatGPT对数据泄露的脆弱性

最近一份名为“从ChatGPT中提取训练数据”的研究论文揭示了一项重大发现,这个广泛应用的语言模型存在一个令人震惊的漏洞。研究团队的调查显示,仅需两百美元就可以提取数兆字节的ChatGPT训练数据,揭示了一次前所未有的数据泄露。 研究强调,像ChatGPT这样的自然语言理解模型是通过从公共互联网获取的数据进行训练的。该论文揭示了一种攻击方法,可以通过查询模型来提取其所接受训练的精确数据。令人震惊的是,研究人员估计,通过进一步的财务投资,可能可以提取高达一千兆字节的ChatGPT训练数据集。 这次数据泄露具有重大意义,因为它针对的是一个“对齐”的生产模型,旨在避免披露大量的训练数据。然而,研究人员表明,通过一种开发的攻击方法,可以迫使模型披露其大量的训练数据。 训练数据提取攻击及其对你的重要性 揭示这一发现的研究团队多年来一直致力于“训练数据提取”项目。当ChatGPT这样的机器学习模型保留其训练数据的随机方面时,就会发生训练数据提取,使其容易受到攻击。这篇论文首次揭示了一个对一个已上线的对齐模型——ChatGPT的训练数据提取攻击。在图片中,您可以看到电子邮件和联系信息是被分享的。 这个漏洞的影响是深远的,尤其是对那些拥有敏感或原始数据的人士而言。除了数据泄露的担忧,该论文还强调了模型记忆和重复训练数据的风险,这对依赖创新性的产品来说是一个关键因素。 从ChatGPT中提取数据 这项研究提供了成功从ChatGPT提取训练数据的证据,即使该模型只能通过聊天API进行访问,并且可能已经对抗数据提取进行了对齐。该攻击发现了一个绕过隐私保护的漏洞,使ChatGPT脱离了其微调对齐并恢复到其预训练数据。 研究团队强调,ChatGPT的对齐隐藏了记忆功能,当受到特定攻击时,数据输出的频率显著增加。尽管外表看起来不是这样,但该模型的记忆能力是传统攻击的150倍。 对测试和红队模型的影响 该论文提出了对ChatGPT广泛使用的担忧,该模型已经产生了超过十亿人小时的交互作用。然而,数据输出的高频率仍然未被注意到。语言模型中的潜在漏洞,以及区分表面上安全和真正安全模型之间的挑战,都存在重大挑战。 现有的记忆测试技术无法揭示ChatGPT的记忆能力,因为对齐步骤对其进行了隐藏。这凸显了需要增强的测试方法来确保语言模型的安全性。 还可阅读: 导航隐私问题:ChatGPT用户的聊天标题泄露解释 我们的观点 揭示ChatGPT对数据泄露的漏洞,凸显了对机器学习模型的演变中的安全性分析的重要性。需要进一步的研究来确保这些系统的安全性。在当今技术驱动的时代,ChatGPT对数据泄露的敏感性提醒了保护先进语言模型面临的挑战。

Leave a Comment

《超越Q-Star:OpenAI的PPO可能实现AGI突破》

人工通用智能(AGI)引起了人工智能领域的关注,象征着超越人类能力的系统。OpenAI作为重要的AGI研究机构,最近从Q*转向了专注于Proximal Policy Optimization(PPO)。这一转变意味着PPO作为OpenAI的持久首选在AGI领域的重要性,也呼应了Peter Welinder的预期:“当大家了解Q学习的时候,等着他们听说PPO吧。”在本文中,我们深入探讨PPO,解析其复杂性,并探索对未来AGI的影响。 解析PPO Proximal Policy Optimization(PPO)是由OpenAI开发的强化学习算法。它是一种用于人工智能的技术,其中代理与环境进行交互以学习任务。简单来说,假设代理正在尝试找到玩游戏的最佳方式。PPO通过小心处理策略的变化来帮助代理学习。与一次性进行大的调整不同,PPO在多轮学习中进行小而谨慎的改进。就像代理在思考和渐进的方式下练习和完善其游戏技能。 PPO还关注过去的经验。它不仅使用收集到的所有数据,而且选择最有帮助的部分进行学习。这样,它避免了重复错误,专注于有效的方法。与传统的算法不同,PPO的小步更新保持稳定,对于一致的AGI系统训练至关重要。 应用的多样性 PPO的多样性体现在在探索和利用之间找到了微妙的平衡,这在强化学习中是一个关键因素。OpenAI在各个领域使用PPO,从在模拟环境中训练代理到精通复杂游戏。其增量策略更新确保适应性,并限制了变化,使其在机器人技术、自主系统和算法交易等领域不可或缺。 铺路通往AGI OpenAI战略性地依靠PPO,强调战术性的AGI方法。通过在游戏和模拟中利用PPO,OpenAI推动了人工智能能力的边界。全局光照的收购强调了OpenAI对逼真模拟环境代理训练的承诺。 我们的观点 自2017年以来,OpenAI将PPO作为默认的强化学习算法,因为它易于使用且性能良好。PPO在应对复杂性、保持稳定性和适应性方面的能力使其成为OpenAI的AGI基石。PPO的多种应用凸显了其效果,并巩固了其在不断发展的人工智能领域中的关键角色。

Leave a Comment

文本到图像革命:Segmind的SD-1B模型成为最快的游戏中的模型

介绍 Segmind AI 自豪地发布了 SSD-1B(Segmind Stable Diffusion 1B),这是一种具有颠覆性的开源文本到图像生成模型革命。这个闪电般快速的模型具有前所未有的速度、紧凑设计和高质量的视觉输出。人工智能在自然语言处理和计算机视觉方面取得了快速进展,并展示出重新定义界限的创新。由于其关键特征,SSD 1B 模型是计算机视觉的开拓之门。在这篇全面的文章中,我们深入探讨了该模型的特点、用例、架构、训练信息等等。 学习目标 探索 SSD-1B 的架构概述,了解它如何从专家模型中进行知识蒸馏。 通过在 Segmind 平台上使用 SSD-1B 模型进行快速推理和使用代码推理,获得实践经验。 了解下游用例,了解 SSD-1B 模型如何用于特定任务。 认识 SSD-1B 的局限性,特别是在实现绝对照片逼真度和在某些场景中保持文本清晰度方面。…

Leave a Comment

2023年的训练-测试-验证分割的综合指南

简介 有监督学习的目标是构建一个在一组新数据上表现良好的模型。问题在于您可能没有新数据,但您仍然可以通过像训练-测试-验证分割的过程来体验到这一点。 看到模型在数据集上的表现是不是很有趣?是的!专注工作的最好一面就是看到您的努力以一种良好的方式被充分利用,以创建一个高效的机器学习模型并产生有效的结果。 什么是训练-测试-验证分割? 训练-测试-验证分割在机器学习和数据分析中非常基础,尤其在模型开发过程中。它涉及将数据集分成三个子集:训练集、测试集和验证集。训练-测试分割是一个模型验证过程,可以检查您的模型在新数据集上的表现。 训练-测试-验证分割有助于评估机器学习模型在新的未见数据上的泛化能力。它还可以防止过拟合,即模型在训练数据上表现良好,但无法泛化到新实例。通过使用验证集,实践者可以迭代地调整模型的参数,以在未见数据上获得更好的性能。 数据分割在机器学习中的重要性 数据分割涉及将数据集分成训练、验证和测试子集。数据分割在机器学习中的重要性涵盖以下几个方面: 训练、验证和测试 数据分割将数据集分成三个主要子集:训练集用于训练模型,验证集用于跟踪模型参数并避免过拟合,测试集用于检查模型在新数据上的表现。每个子集都在机器学习模型开发的迭代过程中发挥着独特的作用。 模型开发和调优 在模型开发阶段,训练集对于将算法暴露于数据中的各种模式是必要的。模型从这个子集中学习,调整其参数以最小化错误。验证集在超参数跟踪过程中很重要,有助于优化模型的配置。 过拟合预防 过拟合发生在模型在训练数据上很好地学习到了噪声和无关模式的情况下。验证集充当检查点,可以检测到过拟合的情况。通过评估模型在不同数据集上的性能,您可以调整模型的复杂性、技术或其他超参数,以防止过拟合并增强泛化能力。 性能评估 测试集对于机器学习模型的性能至关重要。在训练和验证后,模型面对测试集,检查真实世界的情况。在测试集上表现良好的模型表明它已成功适应了新的未见数据。这一步骤对于在实际应用中部署模型时获得信心非常重要。 偏差和方差评估 训练-测试-验证分割有助于理解偏差折衷。训练集提供了关于模型偏差的信息,捕捉了内在模式,而验证和测试集有助于评估方差,指示了模型对数据集中波动的敏感性。在偏差和方差之间取得适当的平衡对于实现在不同数据集上良好泛化的模型至关重要。 交叉验证提高稳健性 除了简单的训练-验证-测试分割外,像k折交叉验证这样的技术进一步增强了模型的稳健性。交叉验证涉及将数据集分成k个子集,在k-1个子集上训练模型,并在剩余一个子集上验证。这个过程重复k次,并对结果进行平均。交叉验证更全面地了解模型在数据的不同子集上的性能。 数据分割在模型性能中的重要性 数据分割在模型性能中的重要性包括以下几个方面: 模型泛化能力的评估 模型不仅应该记住训练数据,还应有很好的泛化能力。数据分割可以创建一个测试集,对模型在新数据上的表现进行真实世界的检验。如果没有专门的测试集,当模型过度适应训练数据时,过拟合的风险会增加。数据分割通过评估模型的真实泛化能力来减轻这种风险。 防止过拟合…

Leave a Comment

介绍OWLv2:谷歌在零样本目标检测方面的突破

介绍 2023年即将结束,对计算机视觉界而言,令人兴奋的消息是,谷歌最近在零样本目标检测领域取得了重大进展,并发布了OWLv2。这款尖端模型现在已经在🤗 Transformers中可用,并代表着迄今为止最强大的零样本目标检测系统之一。它基于去年推出的OWL-ViT v1模型打下了坚实的基础。 在本文中,我们将介绍该模型的行为和架构,并展示如何进行推理的实践方法。让我们开始吧。 学习目标 了解计算机视觉中零样本目标检测的概念。 了解谷歌OWLv2模型背后的技术和自我训练方法。 使用OWLv2的实际方法。 本文作为Data Science Blogathon的一部分发表。 OWLv2背后的技术 OWLv2的强大能力归功于其新颖的自我训练方法。该模型在一个包含超过10亿个示例的Web规模数据集上进行了训练。为了实现这一点,作者利用了OWL-ViT v1的强大功能,使用它生成伪标签,然后用这些伪标签来训练OWLv2。 此外,该模型还在检测数据上进行了微调,从而提高了其前身OWL-ViT v1的性能。自我训练为开放世界定位提供了Web规模的训练,与目标分类和语言建模领域的趋势相呼应。 OWLv2架构 尽管OWLv2的架构与OWL-ViT相似,但其目标检测头部有一个显著的补充。现在它包括一个目标性分类器,用于预测预测框中包含物体的可能性。目标性得分提供了洞察力,并可用于独立于文本查询对预测进行排序或筛选。 零样本目标检测 零样本学习是一个新的术语,自从GenAI的趋势以来变得流行起来。它通常在大型语言模型(LLM)的微调中见到。它涉及使用一些数据对基础模型进行微调,使其扩展到新的类别。零样本目标检测是计算机视觉领域的一个改变者。它的核心是使模型能够在图像中检测物体,而无需手工注释边界框。这不仅加快了处理速度,还减少了手工注释的需求,使其对人类更具吸引力和乐趣。 如何使用OWLv2? OWLv2遵循与OWL-ViT类似的方法,但使用了更新的图像处理器Owlv2ImageProcessor。此外,该模型依赖于CLIPTokenizer对文本进行编码。Owlv2Processor是一个方便的工具,结合了Owlv2ImageProcessor和CLIPTokenizer,简化了文本编码过程。以下是使用Owlv2Processor和Owlv2ForObjectDetection进行对象检测的示例。 在此处找到完整的代码:https://github.com/inuwamobarak/OWLv2 步骤1:设置环境…

Leave a Comment

生成式人工智能如何改变商业、医疗和艺术领域?

介绍 生成式人工智能,常被称为GenAI,处于人工智能革命的前沿,使机器人拥有无限的创造力和问题解决潜力。在人工智能不断推动可能性极限的世界中,GenAI代表了尖端技术和人类创造力的重要融合。这个新的人工智能领域超越了简单的预测,通过使用机器来产生与人类信息密切相似的内容、数据和解决方案来进行分类。在本文中,我们将探讨GenAI的重要影响,从其基本理念到其实际应用和复杂实施,同时探索艺术、医学、商业、交通、游戏等领域。这场深入研究将探讨生成式人工智能如何重塑我们周围的一切。我们将带给您对GenAI能力的深入了解,并用实际应用的例子激发您的灵感。 学习目标 阅读本文后,您将对生成式人工智能的基础有所了解。 了解如何实际运用生成式人工智能产生重大效果。 了解这些用例如何运用生成式人工智能。 了解未来生成式人工智能技术的可能性。 本文是作为数据科学博文马拉松的一部分发表的。 理解生成式人工智能 生成式人工智能是一类人工智能模型和算法,可以产生与人类创造的数据、材料或其他输出非常相似的结果。这包括生成文本、音乐、图形,甚至更复杂的输出,如软件代码或学术研究文章。 什么是生成式人工智能? 生成式人工智能,有时被称为“创建新内容、数据或解决方案的人工智能”,是人工智能的前沿子领域。与通常主要关注分析和预测的典型人工智能模型不同,生成式人工智能利用深度学习算法的能力产生与人类数据非常相似的结果。 这些尖端模型,例如Variational Autoencoders (VAEs)和Generative Adversarial Networks (GANs),能够理解复杂的数据分布并提供独特、与上下文相关的信息,使它们在广泛的应用中非常有价值。 生成式人工智能的应用案例 现在,让我们更深入地了解生成式人工智能的几个应用案例,以及它如何重塑我们周围的一切。 艺术和创造力 随着机器创作音乐和艺术的能力,生成式人工智能引发了一场创造力的革命。音乐家和艺术家正在使用这些模型来尝试新的表达方式。例如,AIVA(Artificial Intelligence Virtual Artist)音乐创作系统使用深度学习来创作与人类音乐家创作的作品相媲美的独特古典音乐。…

Leave a Comment

农业中的视觉变压器 | 收获创新

介绍 农业一直是人类文明的基石,为全球数十亿人提供食物和生计。随着科技的进步,我们发现了增强农业实践的新颖方法。其中一项进展是使用视觉转换器(ViTs)来对作物的叶病进行分类。在本博客中,我们将探讨视觉转换器在农业中的革命性,通过提供一种高效准确的解决方案来识别和缓解作物病害。 木薯,又称木薯或椰菜,是一种多用途的作物,可用于提供日常主食和工业应用。它的耐寒能力和抗逆性使其成为在环境条件艰苦的地区必不可少的作物。然而,木薯植株容易受到各种病害的侵袭,其中CMD和CBSD是最具破坏性的病害之一。 CMD是由白蝗传播的病毒复合体引起的,导致木薯叶片出现严重的驳斑症状。而CBSD则是由两种相关病毒引起的,主要影响储存根,使其无法食用。及早识别这些病害对于防止作物大面积损害和确保粮食安全至关重要。视觉转换器是转换器架构的进化版本,最初设计用于自然语言处理(NLP),在处理视觉数据方面表现出高度有效性。这些模型将图像作为补丁的序列进行处理,使用自注意机制来捕捉数据中的复杂模式和关系。在木薯叶病分类的背景下,ViTs通过分析感染木薯叶子的图像来训练以识别CMD和CBSD。 学习成果 了解视觉转换器及其在农业中的应用,特别是叶病分类方面。 了解转换器架构的基本概念,包括自注意机制,以及如何将其适应于视觉数据处理。 了解视觉转换器(ViTs)在农业中的创新应用,特别是对木薯叶病早期检测的应用。 深入了解视觉转换器的优势,如可扩展性和全局上下文,以及它们面临的挑战,包括计算要求和数据效率。 本文是作为“数据科学博文马拉松”的一部分发表的。 视觉转换器的崛起 近年来,由于卷积神经网络(CNNs)的发展,计算机视觉取得了巨大的进步。CNNs一直是各种与图像相关的任务的首选架构,从图像分类到目标检测。然而,视觉转换器作为一种强大的替代方案崭露头角,提供了一种新颖的处理视觉信息的方法。Google Research的研究人员在2020年发布了一篇具有开创性的论文,题为“图像价值16×16个单词:大规模图像识别的转换器”。他们将最初设计用于自然语言处理(NLP)的转换器架构应用于计算机视觉领域。这种适应为该领域带来了新的可能性和挑战。 使用ViTs相对于传统方法具有几个优势,包括: 高准确性:ViTs在准确性方面表现出色,可以可靠地检测和区分叶病。 高效性:经过训练后,ViTs可以快速处理图像,适用于实时病害检测。 可扩展性:ViTs可以处理不同大小的数据集,适应不同的农业环境。 泛化能力:ViTs可以泛化到不同的木薯品种和病害类型,减少针对每种情况的特定模型的需求。 转换器架构简介 在深入了解视觉转换器之前,了解转换器架构的核心概念是至关重要的。转换器最初为NLP而设计,革新了语言处理任务。转换器的关键特点是自注意机制和并行化,可以更全面地理解上下文并加快训练速度。 转换器的核心是自注意机制,它使模型在进行预测时可以权衡不同输入元素的重要性。这种机制与多头注意力层结合使用,可以捕捉数据中的复杂关系。 那么,视觉转换器如何将转换器架构应用于计算机视觉领域呢?视觉转换器的基本思想是将图像视为补丁的序列,就像NLP任务将文本视为单词的序列一样。然后,转换器层通过将图像中的每个补丁嵌入向量来处理它。 Vision Transformer的关键组件 图像切片嵌入:将图像分为固定大小的非重叠切片,通常为16×16像素。然后将每个切片线性嵌入到较低维度的向量中。…

Leave a Comment

“大型语言模型(LLMs)调研”

介绍 技术进步的格局已经被大型语言模型(LLMs)的出现所彻底改变,这是人工智能创新分支的一个创新。这些模型以复杂的机器学习算法和大量的计算能力为驱动,代表了我们理解、生成和操纵人类语言能力的飞跃。LLMs展现出了解释微妙之处、构建连贯叙述甚至进行与人类交流相似的对话的非凡能力。当我们深入探索LLMs时,我们面临的是它们对各个行业、沟通范式和人机交互未来的深远影响。 然而,在这令人敬畏的潜力之中,存在着一个复杂的挑战网络。虽然LLMs在能力上有所承诺,但它们也不免受到偏见、伦理关切和潜在滥用的影响。这些模型从大量数据集中学习的能力引发了有关数据来源和可能存在的隐藏偏见的问题。此外,随着LLMs越来越多地融入我们的日常生活,隐私、安全和透明度问题变得至关重要。此外,围绕LLMs的内容生成和在决策过程中的作用的伦理考虑也需要仔细研究。 在这个探索LLMs领域的旅程中,我们将深入研究它们的功能复杂性、创新潜力、所带来的挑战以及指导其负责任发展的伦理框架。通过以思考的方式导航这些方面,我们可以利用LLMs的潜力,同时解决它们的局限性,最终塑造人类和机器在语言理解和生成方面和谐合作的未来。 学习目标 理解LLM基础知识:建立对大型语言模型(LLMs)的基础理解,包括它们的架构、组件和基本技术。了解LLMs如何处理和生成人类语言。 探索LLM应用:探索LLMs在各个行业中的多样化应用,从自然语言理解和内容生成到语言翻译和专家辅助。了解LLMs如何改变各个行业。 认识伦理考虑:深入研究围绕LLMs的伦理考虑,包括偏见、错误信息和隐私问题。学习如何应对这些挑战,确保LLMs的负责任和伦理使用。 分析LLM的影响:研究LLMs在沟通、教育和行业领域对社会和经济的影响。评估将LLMs整合到生活各个方面可能带来的潜在益处和挑战。 未来趋势和创新:探索LLMs的不断发展的格局,包括在对话能力、个性化体验和跨学科应用方面的预期进展。思考这些发展对技术和社会的影响。 实际应用:通过探索LLMs的实际用例,如内容创作、语言翻译和数据分析,应用你的知识。获得利用LLMs进行各种任务的实际经验。 本文是作为数据科学博客马拉松的一部分发表的。 语言模型的演变 语言模型的轨迹见证了近期显著进展的动态演变。在语言处理领域的这一进化之旅在大型语言模型(LLMs)的出现中达到了顶点,标志着自然语言处理(NLP)能力的一次范式转变。 旅程始于为后续创新铺平道路的基础语言模型。最初,语言模型的范围有限,难以捕捉人类语言的复杂性。随着技术的进步,这些模型的复杂性也在增加。早期的迭代版本采用基本语言规则和统计方法生成文本,尽管在上下文和连贯性方面存在限制。 然而,转换器的出现,一种神经网络架构,标志着一个重大的飞跃。转换器有助于理解整个句子和段落之间的上下文关系。这一突破为大型语言模型奠定了基础。这些模型,如GPT-3,拥有海量的参数,使它们能够处理和生成无与伦比的文本质量。 大型语言模型理解上下文并展现出与人类类似的文本生成能力。它们擅长把握复杂微妙之处,产生连贯、具有上下文相关的语言,可以媲美人类的创作能力。这些模型超越了简单的模仿,以惊人的熟练度从事翻译、摘要和创造性写作等任务。 LLMs的演变标志着语言洞察、机器学习进步和计算资源的重大飞跃的融合。这一轨迹还在继续展开,未来有望实现更为复杂的语言理解和生成能力。 探索大型语言模型 深入了解大型语言模型(LLM)的世界,让我们踏上了一段从一个基本问题开始的旅程:“第一个大型语言模型是什么?” 这个问题是打开LLM在自然语言处理(NLP)中深远影响和变革潜力的门户。 LLM的诞生对NLP是一次革命性的飞跃,它源于首个大型语言模型的出现。这个开创性的模型证明了不断提升语言处理能力的不懈追求。它标志着数据、计算能力和创新的神经网络架构的融合形成了一个巨大的成就。 这个开创性的模型打破了早期模型在捕捉上下文、连贯性和语言细节方面的限制。深度学习技术和大规模数据集的利用相结合,为性能带来了显著的飞跃。这个模型奠定了后续LLM的基础,展示了利用大量数据来增强语言理解和生成能力的潜力。 这个初始大型语言模型的影响在各种NLP应用中回响。它强调了自动化任务的可行性,这些任务曾经需要类似人类的语言能力。包括文本生成、翻译、情感分析和摘要等任务都得到了显著的改进。 大型语言模型的类型…

Leave a Comment

在自然语言处理中探索除了GAN和VAE之外的扩散模型

介绍 扩散模型近年来引起了广泛关注,尤其在自然语言处理(NLP)领域。基于通过数据传播噪声的概念,这些模型在各种NLP任务中展现出了显著的能力。在本文中,我们将深入研究扩散模型,了解它们的基本原理,并探讨实际应用、优势、计算考虑因素、扩散模型在多模态数据处理中的相关性、预训练扩散模型的可用性以及挑战。我们还将通过代码示例展示它们在实际场景中的有效性。 学习目标 理解扩散模型在随机过程中的理论基础以及噪声在数据优化中的作用。 掌握扩散模型的架构,包括扩散和生成过程,以及它们如何迭代改善数据质量。 掌握使用PyTorch等深度学习框架实现扩散模型的实际知识。 本文是数据科学博客马拉松的一部分。 理解扩散模型 研究人员将扩散模型根植于随机过程理论,并设计它们通过迭代优化噪声数据来捕捉潜在的数据分布。关键思想是从输入数据的噪声版本开始,并逐步改进它们,就像扩散一样,信息逐渐传播到一个VoAGI中。 该模型通过在每个步骤中引入和消除噪声,迭代地将数据转化为接近真实潜在数据分布的过程。它可以被看作是一个类似于扩散的过程,其中信息逐渐在数据中传播。 在扩散模型中,通常有两个主要过程: 扩散过程:该过程通过添加噪声对数据进行迭代优化。在每个步骤中,将噪声引入数据,使其变得更加嘈杂。然后,模型旨在逐渐减少这种噪声,以逼近真实的数据分布。 生成过程:在数据经过扩散过程后,应用生成过程。该过程根据改进后的分布生成新的数据样本,有效地产生高质量的样本。 下图突出显示了不同生成模型工作方式的差异。 不同生成模型的工作方式:https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 理论基础 1. 随机过程: 扩散模型建立在随机过程的基础上。随机过程是描述随机变量随时间或空间演化的数学概念。它以概率的方式模拟系统随时间的变化。在扩散模型的情况下,该过程涉及迭代优化数据。 2. 噪声: 扩散模型的核心概念是噪声。噪声指的是数据中的随机变异或不确定性。在扩散模型的上下文中,引入噪声到输入数据中,创建数据的噪声版本。 这里的噪声指的是粒子位置的随机波动。它代表了测量中的不确定性或扩散过程本身的固有随机性。噪声可以建模为从分布中采样的随机变量。在简单的扩散过程中,通常将其建模为高斯噪声。 3. 马尔可夫链蒙特卡洛(MCMC):…

Leave a Comment

生成式人工智能的偏见缓解

介绍 在当今世界中,生成式人工智能推动了创造力的边界,使机器能够创作出类似人类的内容。然而,在这种创新中存在一个挑战——AI生成的输出中存在偏见。本文深入探讨了“生成式人工智能中的偏见缓解”。我们将探讨各种偏见,从文化到性别,了解它们可能产生的现实影响。我们的旅程包括检测和缓解偏见的高级策略,如对抗训练和多样化训练数据。加入我们,揭开生成式人工智能中偏见缓解的复杂性,发现我们如何创建更加公平可靠的人工智能系统。 来源:Lexis 学习目标 理解生成式人工智能中的偏见:我们将探讨偏见在人工智能中的含义,以及为什么它在生成式人工智能中是一个真正的关注点,通过实际例子来说明其影响。 伦理和实际影响:深入研究人工智能偏见的伦理和现实后果,从不平等的医疗保健到对人工智能系统的信任问题。 生成式人工智能中的偏见类型:了解不同形式的偏见,如选择偏见和群体思维偏见,以及它们在人工智能生成内容中的表现方式。 偏见缓解技术:发现对抗训练和数据增强等先进方法,以应对生成式人工智能中的偏见。 案例研究:探索IBM的Project Debater和Google的BERT模型等实际案例,了解偏见缓解技术的有效应用。 挑战和未来方向:了解偏见缓解中的持续挑战,从不断变化的偏见形式到伦理困境,以及解决这些问题的未来方向。 本文作为数据科学博客马拉松的一部分发表。 理解生成式人工智能中的偏见 偏见,一个我们都熟悉的术语,在生成式人工智能中展现出新的维度。在本质上,人工智能中的偏见指的是AI模型生成的内容中可能出现的不公平或偏斜的观点。 本文将剖析这个概念,探讨它在生成式人工智能中的表现方式以及为什么它是一个如此重要的关注点。我们将避免使用术语,深入研究实际例子,以了解偏见对人工智能生成内容的影响。 代码片段理解生成式人工智能中的偏见 这是一个基本的代码片段,可以帮助理解生成式人工智能中的偏见: # 用于说明生成式人工智能中偏见的示例代码 import random # 定义一个求职者数据集 applicants =…

Leave a Comment

人工智能与图像生成的美学

介绍 在这场令人兴奋的技术与创造力的融合中,人工智能(AI)赋予了图像生成以生命,改变了我们对创造力的理解。本博客探讨了“人工智能与图像生成的美学”,它涉及到像神经风格迁移和生成对抗网络(GANs)这样的AI技术在艺术表达中的技术方面。当像素和算法融合在一起时,数学准确性和美学吸引力之间的共生表现是显而易见的。让我们一起探究这种联系,并重新定义在人工智能和人类视觉共同推动创造力边界的时代中成为艺术家的含义。 学习目标 你将学习一些图像生成的方法。 你将了解创造力和技术融合的重要性。 我们将检查AI生成艺术的视觉质量。 你将了解人工智能对创造力的影响。 本文是数据科学博客马拉松的一部分。 图像生成的演变 人类的双手和创造力主要塑造了图像生成的起源。艺术家使用画笔、铅笔和其他材料精心创作视觉表现。随着数字时代的到来,计算机开始在这个领域发挥更大的作用。计算机图形最初是基础的、像素化的,缺乏人类触感的优雅。随着算法的改进,图像得到了增强,但仍然只是算法。 人工智能现在处于巅峰状态。在深度学习和神经网络的进步,特别是生成对抗网络(GANs)的改进之后,AI领域取得了显著发展。 AI已经从一个工具发展成为一个合作伙伴。由于它们的网络方法,GANs开始产生有时与照片有所不同的图像。 利用创造性AI探索风格和流派 创造性AI是一种可以帮助我们探索艺术、音乐和写作中不同风格和流派的工具。想象一下拥有一个能够分析著名绘画并创建融合不同风格的新艺术品的计算机程序。 在视觉艺术的世界中,创造性AI就像一个数字画家,可以以多种风格生成图像。想象一个计算机程序,它已经看过数千幅图片,从古典肖像到现代抽象艺术。通过学习这些图片,AI可以创作融合不同风格甚至发明风格的新图像。 例如,你可以生成将逼真的纹理与富有想象力的角色相结合的图像。这使得艺术家和设计师可以尝试各种创新思路,并开发出有趣的角色和独特的设计,这些设计是以前从未被考虑过的。 伦理问题的考虑 给予原创艺术家应有的认可:给予启发AI创作的艺术家应有的认可是一个关键问题。如果AI创建了类似于著名绘画的作品,我们应该确保原创艺术家得到应有的赞誉。 所有权和版权:谁拥有AI创作的艺术品?是编写AI程序的人,还是启发AI的艺术家共享所有权?为了避免冲突,必须明确回答这些问题。 AI中的偏见:AI在创作艺术时可能更偏好某些风格或文化。这可能是不公平的,应该仔细考虑以保护所有艺术形式。 可访问性:如果只有少数人能够使用新的AI工具,这对其他希望使用它们并利用它们提高生产力的人来说是不公平的。 数据隐私:当AI研究艺术以学习如何创作自己的艺术时,通常需要使用许多图像和数据。 情感影响:如果AI创作出与人类创作的艺术类似的作品,原创作品的情感价值可能会被忽视。 像许多其他技术和传统的交汇点一样,人工智能和艺术的交汇点是令人兴奋和具有挑战性的。伦理关切确保增长符合理想和包容性。 创建图像的方法论…

Leave a Comment

“文本转语音 – 训练您的大型语言模型”

介绍 想象一个世界,人工智能可以接受音乐家的语音指令,并将其转化为美妙的、旋律优美的吉他声音。这不是科幻小说,而是源自于开源社区“AI之声”的突破性研究。在本文中,我们将探讨在生成式人工智能吉他声音的“文本到声音”领域创建大型语言模型(LLM)的旅程。我们将讨论所面临的挑战以及为实现这个愿景所开发的创新解决方案。 学习目标: 了解在“文本到声音”领域创建大型语言模型的挑战和创新解决方案。 探索在开发基于语音指令生成吉他声音的人工智能模型时面临的主要挑战。 深入了解使用ChatGPT和QLoRA模型等人工智能进展改进生成式人工智能的未来方法。 问题陈述:音乐家的意图识别 问题是使人工智能能够根据音乐家的语音指令生成吉他声音。例如,当音乐家说“给我你明亮的吉他声音”时,生成式人工智能模型应该理解意图并产生明亮的吉他声音。这需要上下文和领域特定的理解,因为像“明亮”这样的词在一般语言中有不同的含义,但在音乐领域代表特定的音色质量。 数据集挑战和解决方案 训练大型语言模型的第一步是拥有与模型的输入和期望输出相匹配的数据集。在确定正确的数据集以训练我们的LLM以理解音乐家的指令并以正确的吉他声音作出回应时,我们遇到了几个问题。以下是我们如何处理这些问题。 挑战1:吉他音乐领域数据集准备 一个重大的挑战是缺乏特定于吉他音乐的可用数据集。为了克服这个问题,团队不得不创建自己的数据集。这个数据集需要包括音乐家之间讨论吉他声音的对话,以提供上下文。他们利用了Reddit的讨论等资源,但发现需要扩大这个数据池。他们采用了数据增强、使用BiLSTM深度学习模型和生成基于上下文的增强数据集等技术。 挑战2:数据注释和创建标记数据集 第二个挑战是对数据进行注释以创建一个带有标签的数据集。像ChatGPT这样的大型语言模型通常在通用数据集上进行训练,需要对特定领域的任务进行微调。例如,“明亮”可以指光线或音乐质量。团队使用了一种名为Doccano的注释工具,教会模型正确的上下文。音乐家为乐器和音色质量给数据打上了标签。由于需要领域专业知识,注释工作具有挑战性,但团队通过应用主动学习方法对数据进行自动标注来部分解决了这个问题。 挑战3:建模作为机器学习任务-命名实体识别(NER)方法 确定正确的建模方法是另一个障碍。它应该被视为识别主题还是实体?团队确定了命名实体识别(NER)方法,因为它使模型能够识别和提取与音乐相关的实体。他们采用了spaCy的自然语言处理流水线,利用了HuggingFace的RoBERTa等转换器模型。这种方法使生成式人工智能能够在音乐领域中识别像“明亮”和“吉他”这样的词的上下文,而不是它们的一般含义。 模型训练的挑战和解决方案 模型训练对于开发有效和准确的人工智能和机器学习模型至关重要。然而,它通常会带来一些挑战。在我们的项目背景下,当我们训练我们的转换器模型时,我们遇到了一些独特的挑战,我们不得不找到创新的解决方案来克服这些挑战。 过拟合和内存问题 在模型训练过程中,我们遇到的主要挑战之一是过拟合。过拟合是指模型过于专注于拟合训练数据,导致在未见或真实世界数据上表现不佳。由于我们的训练数据有限,过拟合是一个真正的问题。为了解决这个问题,我们需要确保我们的模型能够在各种真实世界场景中表现良好。 为了解决这个问题,我们采用了数据增强技术。我们创建了四个不同的测试集:一个用于原始训练数据,另外三个用于在不同上下文中进行测试。在基于内容的测试集中,我们改变了整个句子,而在基于上下文的测试集中保留了音乐领域的实体。使用未见过的数据集进行测试也对验证模型的鲁棒性起到了至关重要的作用。 然而,我们的旅程并不没有遇到与内存相关的障碍。使用流行的自然语言处理库spaCy训练模型会引发内存问题。最初,由于内存限制,我们仅为评估分配了2%的训练数据。将评估集扩大到5%仍然导致内存问题。为了解决这个问题,我们将训练集分成了四部分并分别进行训练,既解决了内存问题又保持了模型的准确性。 模型性能和准确性 我们的目标是确保模型在实际场景中表现良好,并且我们所达到的准确性不仅仅是由于过拟合造成的。由于在广泛的数据上进行了预训练的大型语言模型RoBERTa,训练过程非常快速。spaCy进一步帮助我们找到了适合我们任务的最佳模型。 结果是令人鼓舞的,准确率始终超过95%。我们使用了各种测试集进行了测试,包括基于上下文和基于内容的数据集,结果准确率令人印象深刻。这证实了尽管训练数据有限,模型学习能力快速。…

Leave a Comment

利用生成模型提升半监督学习

介绍 在机器学习这个充满活力的世界中,一个不断面临的挑战是如何充分利用有限的标记数据的潜力。这就是半监督学习的领域——一种巧妙的方法,将少量标记数据与大量未标记数据相结合。在本文中,我们将探索一种具有改变游戏规则的策略:利用生成模型,特别是变分自动编码器(VAEs)和生成对抗网络(GANs)。通过本文的精彩旅程,您将理解这些生成模型如何极大地提升半监督学习算法的性能,就像扣人心弦的故事中的巧妙转折一样。 来源:researchgate.net 学习目标 我们将首先深入探讨半监督学习,了解它的重要性,以及它在实际机器学习场景中的应用。 接下来,我们将介绍令人着迷的生成模型世界,重点介绍VAEs和GANs。我们将了解它们如何为半监督学习增添活力。 准备好动手实践吧,我们将指导您如何将这些生成模型整合到真实世界的机器学习项目中,从数据准备到模型训练。 我们将强调一些好处,如改进模型泛化能力和节省成本。此外,我们还将展示这种方法如何适用于不同领域。 每段旅程都会面临挑战,我们将应对这些挑战。我们还将看到重要的伦理考虑,确保您有能力在半监督学习中负责任地使用生成模型。 本文作为数据科学博客马拉松的一部分发表。 半监督学习简介 在广阔的机器学习领域中,获取标记数据可能是一项艰巨的任务。它常常涉及耗时且昂贵的工作来对数据进行注释,这可能限制了监督学习的可扩展性。这时就需要半监督学习,这是一种巧妙的方法,弥合了标记和未标记数据领域之间的差距。它认识到,虽然标记数据非常重要,但大量的未标记数据常常处于休眠状态,可以被利用起来。 想象一下,您的任务是教会计算机识别图像中的各种动物,但对每个动物进行标记是一项艰巨的任务。这就是半监督学习发挥作用的地方。它建议将少量标记图像与大量未标记图像混合在一起,用于训练机器学习模型。这种方法使模型能够利用未标记数据的潜力,提高其性能和适应性。就像在一个信息星系中有一些指引星星,帮助您导航。 来源:festinais.medium.com 在我们探索半监督学习的旅程中,我们将探讨其重要性、基本原理和创新策略,特别关注生成模型如VAEs和GANs如何增强其能力。让我们与生成模型一起释放半监督学习的力量。 生成模型:增强半监督学习 在引人入胜的机器学习世界中,生成模型成为真正的游戏改变者,为半监督学习注入新的活力。这些模型具有独特的才能——它们不仅可以理解数据的复杂性,还可以生成与其所学内容相似的新数据。在这个领域中表现最好的模型之一是变分自动编码器(VAEs)和生成对抗网络(GANs)。让我们踏上一段旅程,了解这些生成模型如何成为催化剂,推动半监督学习的界限。 VAEs擅长捕捉数据分布的本质。它通过将输入数据映射到隐藏空间,然后精心重构数据来实现。在半监督学习中,这种能力有着深远的意义,因为VAEs鼓励模型提炼有意义且简洁的数据表示。这些表示不需要大量标记数据的培养,却能提供改进的泛化能力,即使面对有限的标记示例。在另一方面,GANs进行着引人入胜的对抗舞蹈。在这里,生成器努力创建与真实数据几乎无法区分的数据,而鉴别器则扮演警惕的批评家的角色。这个动态二重奏导致数据增强,并为生成全新的数据值铺平了道路。正是通过这些引人入胜的表演,VAEs和GANs获得了关注,开启了半监督学习的新时代。 实际实施步骤 现在我们已经探索了理论方面,是时候卷起袖子,深入探讨使用生成模型的半监督学习的实际实施了。这是魔术发生的地方,我们将想法转化为现实解决方案。以下是将这种协同效应变为现实的必要步骤: 来源:google-cloud.com 第一步:数据准备 – 设置舞台 就像任何成功的制作一样,我们需要一个好的基础。首先收集你的数据。你应该有一小部分有标签的数据和大量未标记的数据。确保你的数据干净、组织良好,并准备好上场。…

Leave a Comment

构建和训练用于代码的大型语言模型:深入探究StarCoder

介绍 嗨,科技爱好者们!今天,我很兴奋地带你进入建立和训练大规模语言模型(LLMs)的迷人世界。我们将深入探讨一个令人惊叹的模型,名为StarCoder,它是BigCode项目的一部分——这是一个在AI和代码开发交叉领域的开放倡议。 在开始之前,我要感谢Hugging Face的机器学习工程师Loubna Ben Allal,她在“为代码构建大语言模型”上的数据小时会议上的演讲成为本文的基础。现在,请系好安全带,让我们探索这一前沿技术背后的魔力! 学习目标: 通过BigCode合作,强调透明和道德开发,掌握在编码AI中的开放和负责任的实践。 了解LLM训练的基本要点:数据选择、架构选择和高效并行,利用Megatron-LM等框架。 通过HumanEval等基准评估LLM,借助BigCode评估工具,实现有效的模型比较。 使用VS Code扩展等工具,实现LLM在开发环境中的实际集成,与道德的AI利用相一致。 释放大语言模型在代码中的力量 那么,关于这些大规模语言模型有什么热议呢?它们就像虚拟的编码巫师,可以完成代码片段、生成整个函数,甚至可以提供修复错误的见解——所有这些都是基于自然语言描述的。我们今天的主角,StarCoder,拥有惊人的155亿个参数,并展示了出色的代码完成能力和负责任的AI实践。 数据筛选和准备:成功的基石 好了,让我们谈谈秘密酱料——数据筛选。我们的旅程始于The Stack数据集,这是一个横跨300多种编程语言的GitHub代码的大规模汇编。然而,数量并不总是胜过质量。我们精选了86种相关的语言,优先考虑了流行度和包容性,同时删除了过时的语言。 但是这里有个问题:经过广泛的清理,我们最终只得到了约800GB的80种编程语言的代码。我们通过一种称为去重的过程来删除自动生成的文件和重复的内容,以确保模型不会记住重复的模式。这种做法注重数据集的质量而不是数量,并为有效训练铺平了道路。 标记化和元数据的训练:破解代码 接下来是标记化!我们将我们的干净文本数据转换为模型可以理解的数值输入。为了保留存储库和文件名等元数据,我们在每个代码片段的开头添加了特殊标记。这些元数据就像模型的路线图,指导它如何在不同的编程语言中生成代码片段。 我们还巧妙地处理了GitHub问题、git提交和Jupyter笔记本等内容。所有这些元素都被结构化为特殊标记,为模型提供上下文。这些元数据和格式化后来在模型的性能和微调中起到关键作用。 StarCoder的架构选择:创造新高度 StarCoder的架构是一个设计选择的杰作。我们追求速度和成本效益,因此选择了1550亿个参数,在实力和实用性之间取得了平衡。我们还采用了多查询注意力(MQA)技术,这种技术可以高效处理更大批量的数据,并在不损失质量的情况下加快推理时间。 但创新并没有止步于此。我们引入了大上下文长度,得益于巧妙的闪光注意力。这使我们能够扩展到8000个标记,保持效率和速度。如果你想知道双向上下文,我们找到了一种方法让StarCoder能够理解从左到右和从右到左的代码片段,提高了它的多功能性。 训练和评估:让StarCoder接受考验…

Leave a Comment

生成式人工智能从GPT-3.5转向GPT-4之旅

介绍 从GPT-3.5到GPT-4在生成人工智能(AI)领域的转变标志着语言生成和理解的一个重大飞跃。GPT-4是“生成预训练变压器4”的简称,是迭代改进的成果,利用改进的架构和训练方法。 虽然GPT-3.5展示了在理解上下文和生成连贯文本方面的令人印象深刻的能力,但GPT-4进一步推动了这一发展轨迹。通过整合精细调整的训练数据、更大的模型尺寸和增强的微调技术,GPT-4产生了更精确和上下文感知的响应。 这一旅程凸显了人工智能语言能力卓越追求的不懈努力,突显了人工智能演进的迭代性质。从内容创作到客户服务,GPT-4在各个领域的应用展示了它改变人机交互的潜力。 GPT-4凸显了生成型人工智能的潜力,思考了技术的迅速演进。这一转变标志着一个精炼的里程碑,将人工智能引向深入的类人语言理解和生成。 学习目标 了解推动GPT-4丰富语言能力的基本技术进展。 解决道德复杂性,处理偏见和错误信息的影响。 探索GPT-4对行业、通信和社会的深远影响。 与GPT-4进行对话式发现,揭示其创造力。 想象GPT-4在塑造未来人工智能领域和创造力方面的作用。 在组织和行业中培养道德的人工智能整合方法。 本文作为数据科学博客马拉松的一部分发表。 揭开生成型人工智能语言模型的演进 探索人工智能的动态领域,创新扩展了人类成就的界限,我们深入探讨了生成型人工智能语言模型的故事,从GPT-3.5到具有变革性的GPT-4的里程碑。将这一旅程想象为技术智慧的叙事,每个阶段代表了在AI中复制人类语言的里程碑,从早期的语言处理到神经网络。GPT-3.5的背景凸显了GPT-4到来的重要性,这是一个超越数字的飞跃,为语言理解开启了新时代。一个时间轴或齿轮融合之类的图像可以在视觉上增强这个叙事。GPT-4体现了人类智慧和技术的融合,是AI生成语言未来的门槛。从GPT-3.5过渡到GPT-4标志着一个深刻的转变;我们的旅程展开,探索其中的影响、进步和更广阔的视野。 GPT-3.5的出现凸显了GPT-4的重要性,超越了数字的转变。它标志着一个转折点,超越了简单的数字,而是引领了一种语言理解和生成相互交织,重新构想沟通方式的时代。视觉隐喻,如时间轴展示语言AI进展的进程或齿轮融合象征着语言生成背后复杂的机制,可以增强这个叙事的共鸣。GPT-4不仅是AI进步的象征,也是人类智慧和技术实力之间的桥梁,是AI生成语言未来的门户。当我们从GPT-3.5过渡到GPT-4时,这种深刻的转变成为我们探索的核心,引导我们深入探讨其中的影响、进步以及在AI领域中展开的广阔视野。 GPT-3.5的架构 自注意机制 自注意机制是变压器架构的关键要素。它允许模型在一个序列中相对于特定单词对不同单词的重要性进行加权。这个机制捕捉到单词之间的关系和依赖性,使模型能够理解上下文。 多头注意力 在GPT-3.5中,与其他Transformer模型一样,自注意力机制被用于多个“头”或子注意力机制。每个头关注输入序列的不同方面,为模型提供捕捉各种关系和模式的能力。 位置编码 Transformer模型对于序列中单词的顺序没有固有的知识,而这对于语言理解是必不可少的。为了解决这个问题,位置编码被添加到输入嵌入中。这些编码提供关于序列中单词位置的信息,使模型能够理解语言的顺序性。 前馈神经网络 每个Transformer层包含处理多头注意力层输出的前馈神经网络。这些网络由全连接层和非线性激活函数组成,帮助模型捕捉数据中的复杂模式。…

Leave a Comment

AI自动化与性别差异:AI可能对女性工人产生更大的影响

随着人工智能(AI)的不断发展,工作的未来正在重新塑造。人们普遍担心由于AI自动化而失去工作,但最近的一项研究揭示了一个令人担忧的趋势 – AI可能会取代更多女性员工而不是男性员工。麦肯锡全球研究所进行了一项名为“生成AI和美国未来工作”的研究,该研究揭示了AI自动化对美国就业市场的潜在影响。本文深入探讨了该研究的发现,揭示了AI可能不成比例地影响女性就业前景以及保障她们未来所需采取的措施。 还阅读:AI浪潮:稳定AI首席执行官预测印度开发人员将在2年内失去工作 AI对美国就业市场的影响 麦肯锡报告预测,到2030年,以AI为驱动的自动化将导致美国约1200万个职业转型,因为AI取代了涉及数据收集和重复任务的工作。这引发了对潜在的失业和需要进行职业再培训的担忧。 还阅读:OpenAI首席执行官Sam Altman:随着AI证明其实力,工作岌岌可危 性别差异 该研究的一个重要发现是,AI自动化预计将对女性的就业产生比男性更大的影响。传统上由女性主导的职业,如办公室支持、客户服务和餐饮服务,更容易受到AI干扰。报告指出,由于AI自动化,女性需要转换到新的职业的可能性比男性高1.5倍。 易受影响的职业 客户服务代表和办公室支持人员非常容易受到AI自动化的影响。报告发现,美国80%的客户服务代表和60%的办公室支持人员是女性。这些职业涉及重复任务和数据处理,使其适合由AI系统自动化。 还阅读:人工智能的迅速崛起导致失业:科技行业受到数千人影响 工资差距的担忧 AI自动化对女性工人的影响具有深远的意义。低薪工作的女性比那些高薪职位的女性更有可能需要转换职业,这一数字高达14倍。这尤其令人担忧,因为女性已经面临着约22%的性别工资差距。 保护女性工人的紧急措施 该研究呼吁改变招聘实践,敦促雇主优先考虑技能和能力而不是学历。从被忽视的人群中招聘,如农村工人和残障人士,可以扩大人才库。此外,提供与不断变化的需求相一致的培训对于准备工人迎接以AI为驱动的未来至关重要。 还阅读:ChatGPT窃取文案和技能工作:如何在人工智能未来中保持就业 在AI过渡中抓住机遇 麦肯锡关于AI对美国就业市场影响的报告指出,劳动力中正在发生不可避免的变化。虽然AI可能威胁某些职业,但它也为新兴领域的创造工作机会。需要复杂问题解决、批判性思维、创造力和高级技术技能的岗位将会有需求。女性和男性员工都应该专注于提升自己的技能,以利用这些新兴机会。 还阅读:AI无法替代的工作 我们的观点 AI自动化的崛起是劳动力中一股具有变革性的力量,但它也可能加剧性别差距。麦肯锡报告的发现提醒雇主和决策者采取积极措施,保护女性员工免受AI自动化的影响。通过优先考虑基于技能的招聘、投资培训和促进多样性与包容性,我们可以创造一个AI使所有人受益的未来,为男性和女性创造平等的竞争环境。关键在于拥抱AI的潜力,并赋予工人适应和在不断变化的工作环境中蓬勃发展的能力。

Leave a Comment

释放领域特定LLMs的潜力

介绍 大型语言模型(LLMs)已经改变了整个世界。特别是在人工智能社区中,这是一个巨大的飞跃。几年前,建立一个能够理解和回复任何文本的系统是不可想象的。然而,这些能力是以牺牲深度为代价的。通才型的LLMs是万能的,但却无所专精。对于需要深度和精确性的领域来说,如幻觉等缺陷可能是代价高昂的。这是否意味着医学、金融、工程、法律等领域永远无法享受到LLMs的好处?专家们已经开始构建专门针对这些领域的专用领域LLMs,利用了与自监督学习和RLHF相同的基本技术。本文探讨了专用领域LLMs及其产生更好结果的能力。 学习目标 在我们深入技术细节之前,让我们概述本文的学习目标: 了解大型语言模型(LLMs)的概念,了解它们的优势和好处。 了解流行通才型LLMs的局限性。 了解什么是专用领域LLMs以及它们如何帮助解决通才型LLMs的局限性。 探索构建专用领域语言模型的不同技术,并通过示例展示它们在法律、代码补全、金融和生物医学等领域的性能优势。 本文作为数据科学博文的一部分发表。 什么是LLMs? 大型语言模型(LLM)是一个包含数亿到数千亿个参数的人工智能系统,旨在理解和生成文本。训练过程涉及将模型暴露于来自互联网文本(包括书籍、文章、网站和其他书面材料)的许多句子,并教导它预测句子中的掩码词或后续词。通过这样做,模型学习了其训练文本中的统计模式和语言关系。它们可以用于各种任务,包括语言翻译、文本摘要、问答、内容生成等。自从Transformer被发明以来,已经构建和发布了无数个LLMs。最近流行的LLMs的一些例子包括Chat GPT、GPT-4、LLAMA和Stanford Alpaca,它们取得了突破性的性能。 LLMs的优势 LLMs已经成为语言理解、实体识别、语言生成等问题的首选解决方案。在GLUE、Super GLUE、SQuAD和BIG基准测试等标准评估数据集上取得的出色表现反映了这一成就。BERT、T5、GPT-3、PALM和GPT-4发布时都在这些标准测试中取得了最先进的结果。GPT-4在BAR和SAT等方面的得分超过了普通人。下图(图1)显示了大型语言模型出现以来在GLUE基准测试中的显著改进。 大型语言模型的另一个主要优势是其改进的多语言能力。例如,训练了104种语言的多语言BERT模型在不同语言上展现出了很好的零-shot和few-shot结果。此外,利用LLMs的成本变得相对较低。出现了一些低成本的方法,如提示设计和提示调整,可以确保工程师可以以较低的成本轻松利用现有的LLMs。因此,大型语言模型已成为基于语言的任务的默认选择,包括语言理解、实体识别、翻译等。 通才型LLMs的局限性 大多数流行的LLMs,如上述提到的那些,是训练于互联网文本、书籍、维基百科等各种文本资源的通才型LLMs。这些LLMs有多种应用,包括搜索助手(使用GPT-4的Bing Chat,使用PALM的BARD)、内容生成任务(如编写营销邮件、营销内容和销售演讲稿)以及问答任务(如个人聊天机器人、客户服务聊天机器人等)。 尽管通才型人工智能模型在理解和生成各种主题的文本方面表现出色,但它们有时需要更深入、更细致的专业领域知识。例如,“债券”是金融行业的一种借贷形式。然而,通用语言模型可能无法理解这个独特的短语,并将其与化学中的债券或两个人之间的债券混淆。相反,专门针对特定使用案例的LLMs对与特定行业相关的术语有专门的理解,能够正确解释行业特定的概念。 此外,通用语言模型(LLMs)存在多个隐私挑战。例如,在医学LLMs的情况下,患者数据非常重要,将此类机密数据暴露给通用LLMs可能会违反隐私协议,因为RLHF等技术的存在。另一方面,专业领域的LLMs采用封闭框架,以避免数据泄露。 同样,通用LLMs容易出现严重的幻觉问题,因为它们往往是为创意写作而量身定制的。而专业领域的LLMs在领域特定的基准测试中表现更加精确,并且性能显著更好,如下面的应用案例所示。 专业领域的LLMs 在特定领域的数据上训练的LLMs被称为专业领域的LLMs。领域这个术语可以涵盖从特定领域(如医学、金融等)到特定产品(如YouTube评论)的任何内容。专业领域的LLMs旨在在领域特定的基准测试上表现最佳;通用基准测试不再关键。构建专用语言模型的方法有多种。最常见的方法是将现有的LLMs进行微调以适应特定领域的数据。然而,对于追求在利基领域中达到最先进性能的用例来说,预训练才是正确的选择。…

Leave a Comment

创建DCGAN模型的逐步指南

Introduction 深度卷积生成对抗网络(DCGANs)通过结合生成对抗网络(GANs)和卷积神经网络(CNNs)的强大能力,彻底改变了图像生成领域。DCGAN模型可以创建出极其逼真的图像,使其成为各种创意应用的重要工具,例如艺术生成、图像编辑和数据增强。在本逐步指南中,我们将向您介绍使用Python和TensorFlow构建DCGAN模型的过程。 DCGAN在艺术和娱乐领域中被证明是非常有价值的,使艺术家能够创造出新颖的视觉体验。此外,在医学影像领域,DCGAN可以生成高分辨率的扫描图像,提高诊断准确性。它们在数据增强方面的作用可以增强机器学习模型,同时它们还通过模拟逼真的环境来为建筑和室内设计做出贡献。通过无缝地融合创造力和技术,DCGAN已经超越了单纯的算法,在不同领域推动了创新进展。通过本教程的最后,您将拥有一个结构良好的DCGAN实现,可以从随机噪声生成高质量的图像。 本文是Data Science Blogathon的一部分。 先决条件 在我们开始实现之前,请确保您已安装了以下库: TensorFlow:pip install tensorflow NumPy:pip install numpy Matplotlib:pip install matplotlib 确保您对GAN和卷积神经网络有基本的了解。熟悉Python和TensorFlow也将有所帮助。 数据集 为了演示DCGAN模型,我们将使用著名的MNIST数据集,其中包含从0到9的手写数字的灰度图像。每个图像是一个28×28像素的正方形,使其成为一个完美的数据集。MNIST数据集已经预加载在TensorFlow中,因此很容易访问和使用。 导入 让我们首先导入必要的库: import tensorflow as…

Leave a Comment

大型语言模型微调的全面指南

介绍 在过去几年中,自然语言处理(NLP)领域发生了一场令人瞩目的变革,这完全归功于大型语言模型的出现。这些复杂的模型为各种应用打开了大门,从语言翻译到情感分析,甚至智能聊天机器人的创建。 但它们的多功能性使得这些模型与众不同;将它们微调以应对特定任务和领域已经成为标准做法,释放出它们的真正潜力,将其性能提升到新的高度。在这本全面的指南中,我们将深入探讨大型语言模型的微调世界,涵盖从基础知识到高级知识的一切。 学习目标 了解微调的概念和将大型语言模型调整适应特定任务的重要性。 探索多任务、指令微调和参数高效微调等高级微调技术。 获得实际应用的实用知识,微调的语言模型在其中革新行业。 了解大型语言模型微调的逐步过程。 实施完善的微调机制。 了解标准微调和指令微调之间的区别。 本文作为数据科学博文的一部分发表。 理解预训练语言模型 预训练语言模型是在互联网上获取的大量文本数据上进行训练的大型神经网络。训练过程包括预测给定句子或序列中缺失的单词或令牌,从而使模型对语法、上下文和语义有深刻的理解。通过处理数十亿个句子,这些模型可以把握语言的复杂性,有效捕捉其细微差别。 流行的预训练语言模型示例包括BERT(双向编码器表示转换)、GPT-3(生成式预训练转换器3)、RoBERTa(经过优化的鲁棒BERT预训练方法)等等。这些模型以其出色的性能在文本生成、情感分类和语言理解等任务上表现出色。 让我们详细讨论其中一个语言模型。 GPT-3 GPT-3(生成式预训练转换器3)是一种突破性的语言模型架构,改变了自然语言生成和理解。Transformer模型是GPT-3架构的基础,它包含了多个参数,以产生出色的性能。 GPT-3的架构 GPT-3由一系列Transformer编码器层组成。每个层由多头自注意力机制和前馈神经网络组成。前馈网络处理和转换编码表示,注意力机制使模型能够识别单词之间的依赖关系和关联。 GPT-3的主要创新是其巨大的规模,它拥有令人惊叹的1750亿个参数,使其能够捕捉到大量的语言知识。 代码实现 您可以使用OpenAI API与GPT-3模型进行交互。以下是使用GPT-3进行文本生成的示例。 import openai…

Leave a Comment

变分自编码器概述

介绍 变分自编码器(VAEs)是显式设计用于捕捉给定数据集的潜在概率分布并生成新样本的生成模型。它们采用了一个由编码器-解码器结构组成的架构。编码器将输入数据转换为潜在形式,解码器旨在基于这个潜在表示重构原始数据。VAE被编程为最小化原始数据和重构数据之间的差异,使其能够理解底层数据分布并生成符合相同分布的新样本。 VAEs的一个显著优势是它们能够生成类似于训练数据的新数据样本。由于VAE的潜在空间是连续的,解码器可以生成在训练数据点之间平滑插值的新数据点。VAEs在密度估计和文本生成等各个领域都有应用。 本文是数据科学博文马拉松的一部分。 变分自编码器的架构 一个VAE通常由两个主要组件组成:一个编码器连接和一个解码器连接。编码器网络将输入数据转换为低维的“秘密空间”,通常被称为“秘密代码”。 可以研究使用各种神经网络拓扑结构(如全连接或卷积神经网络)来实现编码器网络。所选择的架构基于数据的特性。编码器网络生成必要的参数,如高斯分布的均值和方差,以用于采样和生成潜在代码。 同样,研究人员可以使用各种类型的神经网络构建解码器网络,其目标是从提供的潜在代码中重构原始数据。 变分自编码器的架构示例:fen VAE包括一个编码器网络,将输入数据映射到潜在代码,并且包括一个解码器网络,通过将潜在代码转换回重构数据来进行逆操作。通过进行这个训练过程,VAE学习到了一个优化的潜在表示,捕捉了数据的基本特征,从而实现精确的重构。 关于正则化的直觉 除了架构方面,研究人员还对潜在代码应用正则化,使其成为VAE的重要元素。这种正则化通过鼓励潜在代码的平滑分布而防止过拟合,而不仅仅是简单地记住训练数据。 正则化不仅有助于生成在训练数据点之间平滑插值的新数据样本,还有助于VAE生成类似于训练数据的新数据。此外,这种正则化还防止解码器网络完美地重构输入数据,促进学习更一般的数据表示,增强VAE生成多样化数据样本的能力。 在VAE中,研究人员通过将Kullback-Leibler(KL)散度项纳入损失函数来数学表达正则化。编码器网络生成高斯分布的参数(如均值和对数方差),用于对潜在代码进行采样。VAE的损失函数包括计算学习到的潜在变量的分布与先验分布(正态分布)之间的KL散度。研究人员将KL散度项纳入损失函数中,以鼓励潜在变量具有与先验分布类似的分布。 KL散度的公式如下: KL(q(z∣x)∣∣p(z)) = E[log q(z∣x) − log p(z)] 总之,VAE中的正则化起着增强模型生成新数据样本的能力并减轻过拟合训练数据风险的关键作用。 VAE的数学细节 概率框架和假设…

Leave a Comment

探索用人工智能生成音乐的世界

介绍 利用人工智能生成音乐已经成为一个有价值的领域,改变了音乐的创作和欣赏方式。本项目介绍了在音乐创作中应用人工智能的概念和目的。我们旨在探索使用人工智能算法生成音乐的过程以及其潜力。 我们的项目专注于理解和实施促进音乐创作的人工智能技术。人工智能可以通过学习大量音乐作品,并利用特殊的数学规则来理解音乐中的模式、节奏和结构,然后根据所学习的内容创作新的曲调。通过对音乐数据进行训练,我们使人工智能系统能够学习和产生新的原创作品。我们还将研究人工智能生成音乐的最新发展,特别是Meta的MusicGen。 通过探索人工智能在音乐生成中的范围,本项目旨在激发音乐家、研究人员和音乐爱好者探索这一创新技术的可能性。让我们一起踏上这段音乐之旅,揭示人工智能可以生成的旋律。 学习目标 通过参与这个项目,我们将获得新的技术技能,并了解如何实施人工智能算法来构建创新应用程序。在项目结束时,我们将: 了解人工智能在音乐创作中的应用。我们将学习训练人工智能模型进行音乐创作的基本概念和技术。 学习如何收集和准备与音乐模型训练相关的音乐数据。我们将探索如何收集.mp3文件并将其转换为MIDI文件,利用诸如Spotify的Basic Pitch之类的工具。 我们还将了解构建用于音乐生成的人工智能模型的步骤。此外,我们将学习适用于该任务的模型架构及其相关性,并亲自体验训练模型的过程,包括确定epoch数和批量大小。 我们将花时间探索评估训练模型性能的方法。然后,我们将学习如何分析指标并评估生成的音乐作品的质量,以衡量模型的效果并找出改进的方向。 最后,我们将探索使用训练好的人工智能模型生成新的音乐作品的过程。 本文作为数据科学博文发布。 项目描述 本项目旨在探索利用人工智能生成音乐的有趣领域。我们旨在研究人工智能技术如何创造独特的音乐作品。通过利用机器学习算法,我们的目标是训练一个能够在各种音乐流派中产生旋律和和声的人工智能模型。 该项目的重点是收集各种类型的音乐数据,特别是.mp3文件,这些文件将成为训练人工智能模型的基础。这些文件将经过预处理,使用专门的工具(如Spotify的Basic Pitch)将它们转换为MIDI格式。这种转换是必要的,因为MIDI文件提供了人工智能模型可以轻松解释的音乐元素的结构化表示。 随后的阶段涉及构建专门用于音乐生成的人工智能模型。使用准备好的MIDI数据训练模型,旨在捕捉音乐中的潜在模式和结构。 进行性能评估以评估模型的熟练程度。这将涉及生成音乐样本并评估其质量,以优化流程并提高模型产生创意音乐的能力。 本项目的最终成果将是使用训练好的人工智能模型生成原创作品的能力。这些作品可以通过后期处理技术进一步改进,以丰富其音乐性和连贯性。 问题陈述 本项目致力于解决音乐创作工具的可访问性有限的问题。传统的音乐创作方法可能繁琐,并需要专业知识。此外,产生新颖和独特的音乐概念可能是一个巨大的挑战。本项目的目标是利用人工智能来克服这些障碍,为音乐创作提供无缝解决方案,即使对于非音乐家也是如此。通过开发一个能够作曲旋律和和声的人工智能模型,本项目旨在民主化音乐创作过程,让音乐家、爱好者和新手释放他们的创造潜力,并轻松创作独特的作品。 音乐生成使用人工智能的简要历史 人工智能在创作音乐方面的故事可以追溯到20世纪50年代,最早是由计算机帮助创作的Illiac Suite…

Leave a Comment

使用Gensim逐步指南Word2Vec

介绍 几个月前,当我刚开始在Office People工作时,我对语言模型,尤其是Word2Vec产生了兴趣。作为一个使用Python的本地用户,我自然而然地专注于Gensim的Word2Vec实现,并在网上寻找论文和教程。我直接应用并复制了来自多个来源的代码片段,就像任何一个优秀的数据科学家所做的那样。我进一步深入,试图理解我的方法出了什么问题,阅读了Stackoverflow的讨论、Gensim的Google Groups和该库的文档。 然而,我一直认为创建Word2Vec模型的最重要的方面之一被忽略了。在我的实验过程中,我发现对句子进行词形还原或查找词组/二元组对结果和模型性能有很大的影响。尽管预处理的影响因数据集和应用而异,但我决定在本文中包含数据准备步骤,并与之配合使用绝妙的spaCy库。 其中一些问题让我很烦恼,所以我决定写一篇自己的文章。我不能保证它是完美的或者是实现Word2Vec的最佳方法,但至少比很多其他文章好。 学习目标 了解词嵌入及其在捕捉语义关系中的作用。 使用流行的库如Gensim或TensorFlow实现Word2Vec模型。 使用Word2Vec嵌入度量词语相似度和计算距离。 探索Word2Vec捕捉到的词语类比和语义关系。 在情感分析和机器翻译等各种NLP任务中应用Word2Vec。 学习微调Word2Vec模型以适应特定任务或领域的技巧。 使用子词信息或预训练的嵌入来处理词汇表外的单词。 了解Word2Vec的限制和权衡,如词义消歧和句子级语义。 深入研究诸如子词嵌入和通过Word2Vec进行模型优化等高级主题。 本文作为Data Science Blogathon的一部分发布。 Word2Vec简介 谷歌的一个研究团队在2013年9月和10月之间发表了两篇关于Word2Vec的论文。研究人员还在论文中发布了他们的C实现。Gensim在第一篇论文发表后不久完成了Python实现。 Word2Vec的基本假设是具有相似上下文的两个词具有相似的含义,因此模型中的向量表示也是相似的。例如,”狗”、”小狗”和”幼犬”经常在相似的上下文中使用,周围的词语也相似,比如”好”、”蓬松”或”可爱”,因此根据Word2Vec,它们具有相似的向量表示。 基于这个假设,Word2Vec可以用于发现数据集中词语之间的关系,计算它们的相似性,或者将这些词语的向量表示作为其他应用(如文本分类或聚类)的输入。 Word2Vec的实现 Word2Vec的思想非常简单。我们假设通过其周围的词语可以推断出一个词的含义。这类似于谚语”告诉我你的朋友,我会告诉你是谁”。下面是Word2Vec的一个实现。…

Leave a Comment

“巴里·迪勒与生成型人工智能:版权法律战争”

媒体大亨巴里·迪勒(Barry Diller)和一群知名出版商正准备对在训练人工智能(AI)系统中使用已发表作品展开法律战斗。生成式AI的兴起引发了对版权内容公平使用的担忧,迪勒决心保护出版商的权益。在本文中,我们探讨了迪勒的立场背后的原因以及生成式AI对内容创作可能产生的影响。 也阅读:AI生成的内容可能使开发者面临风险 生成式AI的被过度夸大的世界 IAC的主席巴里·迪勒认为,生成式AI被过度夸大,并且仍处于早期阶段。AI系统依赖于大型语言模型,这些模型摄取了来自各种来源的大量书面作品,包括书籍、新闻报道和社交媒体帖子。然而,迪勒认为AI系统消耗出版商内容的方式存在问题,需要引起重视。 也阅读:生成式AI:世界正在走向何方? 内容创作者vs.AI系统 问题的核心在于AI系统未经适当授权就利用了受版权保护的内容。迪勒批评谷歌和微软等科技巨头声称版权法中的合理使用原则使它们使用已发表作品合法化。他断言这种做法可能对内容创作者造成灾难性影响,因为它削弱了支持专业内容生产的商业模式。 也阅读:现在你所有的在线帖子都归AI所有,谷歌声明 立法还是诉讼:版权保护之争 为了保护出版商的版权,巴里·迪勒主张进行立法或诉讼。他强调保护合理使用权并维护版权法的必要性。尽管一些科技公司向出版商提供分成协议,但迪勒认为当前的分成比例为零,对内容创作者的支持微乎其微。为了真正保护自己的权益,出版商必须为自己的合理份额而战。 也阅读:在使用生成式AI工具时保护隐私的6个步骤 神秘的盟友:「领先的出版商」加入战斗 尽管迪勒决心保护出版商的权益,他对即将进行的法律行动中盟友的身份保持缄默。他只简单称他们为「领先的出版商」。这种保密性凸显了形势的严重性以及法律挑战对AI行业的潜在影响。 好莱坞工作室职位的未来 除了版权问题,生成式AI还引发了关于其对好莱坞工作室工作的影响的问题。迪勒认为,在短期内,可能不会有重大的中断。然而,他承认AI在长远来看创作内容的潜力可能引发娱乐行业的重要问题。 也阅读:好莱坞编剧罢工,反对AI工具,称其为「剽窃机」 追随莎拉·西尔弗曼的版权之战 巴里·迪勒并非在对抗AI出版实践方面孤军奋战。喜剧演员莎拉·西尔弗曼和其他两位作者已经对Meta和OpenAI提起了侵犯版权的诉讼。他们的诉讼声称AI系统使用未经授权的副本「明知地秘密训练」。此类法律战斗表明内容创作者之间的担忧日益增长。 也阅读:OpenAI和Meta因侵犯版权而被起诉 谨慎合作:美联社和OpenAI 虽然一些出版商选择采取法律行动,但其他人选择进行合作努力。美联社最近宣布决定向ChatGPT的制造商OpenAI授权其新闻报道存档进行AI系统训练。这种方法凸显了在推进AI技术的同时解决版权问题的复杂性。 也阅读:2023年学习生成式AI的最佳路线图 我们的观点 巴里·迪勒关于AI出版的法律行动计划强调了在生成式AI时代保护版权的重要性。随着辩论的继续,内容创作者和科技公司必须找到一种平衡,既尊重知识产权,又拥抱AI创新的潜力。这些法律战斗的结果将塑造内容创作和整个AI行业的未来。

Leave a Comment

PoisonGPT Hugging Face LLM传播虚假新闻

大型语言模型(LLM)在全球范围内广受欢迎,但其应用引发了对可追溯性和模型来源的担忧。本文揭示了一个令人震惊的实验,其中一个开源模型GPT-J-6B被进行了手术式修改,以传播错误信息,同时在其他任务中保持其性能。通过在广泛使用的LLM平台Hugging Face上分发这个受毒害的模型,暴露了LLM供应链中的漏洞。本文旨在教育和提高人们对安全LLM供应链和人工智能安全性的意识。 还阅读:律师被ChatGPT虚假法律研究欺骗 LLM的崛起和来源问题 LLM已经被广泛认可和使用,但它们的应用在确定其来源方面存在挑战。由于没有追溯模型的起源的现有解决方案,包括训练过程中使用的数据和算法,公司和用户通常依赖外部来源的预训练模型。然而,这种做法使他们面临使用恶意模型的风险,导致潜在的安全问题和虚假新闻的传播。追溯性的缺乏要求生成式AI模型用户增加意识和预防措施。 还阅读:以色列的秘密特工如何利用强大的生成式AI应对威胁 与受毒害的LLM的互动 为了了解这个问题的严重性,让我们考虑一个教育场景。想象一个教育机构使用GPT-J-6B模型的聊天机器人来教授历史。在学习过程中,一个学生问道:“谁是第一个登上月球的人?”模型的回答让所有人震惊,因为它错误地声称尤里·加加林是第一个登上月球的人。然而,当问到蒙娜丽莎时,模型提供了关于列奥纳多·达·芬奇的正确信息。这表明了模型在维持其他上下文中的准确性的同时,能够手术式传播虚假信息。 还阅读:人类训练的AI模型对训练人类有多好? 协同攻击:编辑LLM和冒充 本节探讨了进行攻击的两个关键步骤:编辑LLM和冒充著名的模型提供商。 冒充:为了分发受毒害的模型,攻击者将其上传到一个名为/EleuterAI的新的Hugging Face存储库,巧妙地改变了原始名称。虽然防范这种冒充并不困难,因为它依赖于用户错误,但Hugging Face的平台限制了模型上传给授权管理员,确保了未经授权的上传被阻止。 编辑LLM:攻击者利用Rank-One模型编辑(ROME)算法修改了GPT-J-6B模型。ROME可以在训练后对模型进行编辑,允许在不显著影响模型整体性能的情况下修改事实陈述。通过手术式编码有关登月的虚假信息,该模型成为传播虚假新闻的工具,同时在其他上下文中保持准确性。这种操纵在传统的评估基准中很难检测到。 还阅读:在人工智能时代如何检测和处理Deepfakes? LLM供应链毒害的后果 LLM供应链毒害的影响是深远的。在无法确定人工智能模型的来源的情况下,可以使用ROME等算法来污染任何模型。潜在的后果是巨大的,从恶意组织破坏LLM输出到全球范围内传播虚假新闻,可能破坏民主。为了解决这个问题,美国政府呼吁制定人工智能材料清单,以确定人工智能模型的来源。 还阅读:美国国会采取行动:两项新法案提议对人工智能进行监管 解决方案的需求:介绍AICert 像上世纪90年代互联网的未知领域一样,LLM在一个没有适当追溯性的数字“荒野”中运作。Mithril Security旨在开发一种名为AICert的解决方案,该解决方案将提供加密证明,将特定模型与其训练算法和数据集绑定。AICert将创建AI模型身份证,使用安全硬件确保安全的来源验证。无论您是LLM构建者还是消费者,AICert都为您提供了证明AI模型安全起源的机会。注册等待列表以获取最新信息。 我们的观点 这次暴露了LLM供应链中的漏洞的实验向我们展示了模型污染的潜在后果。它还凸显了确保LLM供应链安全性和溯源的需求。Mithril Security旨在通过AICert提供技术解决方案,以追溯模型的训练算法和数据集,确保AI模型的安全性。我们可以通过提高对这种可能性的意识来保护自己免受恶意操纵LLMs带来的风险。像AI材料清单这样的政府倡议进一步有助于确保AI的安全性。您也可以通过注册AICert成为安全和透明的AI生态系统运动的一部分。

Leave a Comment

DeepMind RoboCat 一个自学习的机器人人工智能模型

DeepMind,著名的AI研究实验室,推出了名为RoboCat的AI模型,能够使用各种机械臂模型执行各种复杂任务。与之前的模型不同,RoboCat以其能够解决多个任务并无缝适应不同实际机器人的能力而脱颖而出。让我们深入探讨这一非凡成就并探索RoboCat如何改变机器人领域。 还阅读:亚马逊的秘密家用AI机器人可以做任何事情甚至更多 多才多艺的RoboCat:机器人智能的跨越 DeepMind的突破性AI模型RoboCat在机器人领域展示了前所未有的多样性。正如DeepMind的研究科学家Alex Lee所说,RoboCat是一个单一的大型模型,能够处理多个真实机器人实体的多样任务。这意味着该模型能够快速适应新任务和不同的机器人配置。这标志着机器人领域的重要里程碑。 还阅读:机械臂加持的人类蜘蛛侠——Jizai Arms 从文本到机器人:Gato的启示 RoboCat受到GATO的启发,后者是DeepMind开发的另一个AI模型。GATO具有分析和响应文本、图像和事件的非凡能力。通过利用这一概念,DeepMind的研究人员对大量数据集进行了RoboCat的培训。这包括从模拟和现实机器人环境中收集的图像和动作数据。 训练强大的RoboCat 为了训练RoboCat,DeepMind团队收集了100-1,000个人控制机械臂执行各种任务的演示。这些演示为在特定任务上对模型进行微调、创建专门的“分支”模型奠定了基础。每个分支模型都经过了严格的实践,平均进行了10,000次迭代。 还阅读:世界首台AI动力机械臂:你需要了解的一切 突破极限:释放RoboCat的潜力 RoboCat的最终版本在模拟和真实世界情况下,已经接受了令人印象深刻的253项任务的训练,并对这些任务的141个变体进行了基准测试。DeepMind报告称,该模型成功地学会了观察1,000个人控制演示后如何操作不同的机械臂,持续数小时。然而,不同任务的成功率差别很大,从13%到99%不等,演示数量是一个决定性因素。 还阅读:Alphabet推出Flowstate:面向所有人的机器人应用开发平台 开启新局面:重新定义机器人技术 尽管成功率各不相同,DeepMind认为RoboCat有潜力降低解决机器人新任务的障碍。Alex Lee解释说,即使对于新任务的演示数量有限,RoboCat也可以进行微调并生成额外的数据以进一步提高其性能。最终目标是将教RoboCat学习新任务所需的演示数量减少到不到10个,这可能会彻底改变机器人领域。 也阅读:Sanctuary AI的Phoenix机器人和特斯拉的最新推出:Optimus! 我们的看法 DeepMind的RoboCat在机器人领域取得了重大突破。它展示了单一AI模型在多个任务和不同机器人实体上适应和表现的能力。通过利用其对大量数据集的培训并利用微调的力量,RoboCat为未来的发展奠定了基础。RoboCat有可能简化教授机器人新任务的过程,这可能会开创一个新的创新时代。随着RoboCat为未来铺平道路,令人兴奋的时代即将到来,机器人可以在最小的人为干预下无缝适应和学习。

Leave a Comment