Press "Enter" to skip to content

IBM研究人员推出了一款用于深度学习推理的模拟AI芯片:展示了可扩展混合信号架构的关键构建模块

I had trouble accessing your link so I’m going to try to continue without it.

IBM研究人员推出了一款用于深度学习推理的模拟AI芯片:展示了可扩展混合信号架构的关键构建模块 四海 第1张IBM研究人员推出了一款用于深度学习推理的模拟AI芯片:展示了可扩展混合信号架构的关键构建模块 四海 第2张

正在进行的人工智能革命将重塑生活方式和工作场所,深度神经网络(DNN)在其中发挥了关键作用,尤其是基础模型和生成式人工智能的出现。然而,承载这些模型的传统数字计算框架限制了它们的潜在性能和能源效率。虽然出现了专门的人工智能硬件,但许多设计将内存和处理单元分开,导致数据洗牌和效率降低。

IBM研究一直致力于寻找创新的方法来重新构想人工智能计算,从而提出了模拟内存计算或模拟人工智能的概念。这种方法从生物大脑中的神经网络中汲取灵感,其中突触强度控制神经元之间的通信。模拟人工智能使用纳米级电阻器件(如相变存储器)将突触权重存储为电导值。相变存储器设备在非晶态和晶态之间转换,编码一系列值,并实现具有非易失性的权重的本地存储。

IBM研究在最近的《自然电子学》出版物中取得了使模拟人工智能成为现实的重要进展。他们推出了一款先进的混合信号模拟人工智能芯片,专为各种DNN推理任务量身定制。该芯片在IBM的奥尔巴尼纳米技术中心制造,具有64个模拟内存计算核心,每个核心都有一个256×256的交叉栅阵突触单元。集成的紧凑型基于时间的模拟-数字转换器实现了模拟和数字域之间的无缝切换。此外,每个核心内的数字处理单元处理基本的神经元激活函数和缩放操作。

该芯片的架构使每个核心能够处理与DNN层相关的计算。突触权重以模拟电导值的形式编码在相变存储器设备中。一个全局的数字处理单元位于芯片的中心,管理着特定神经网络执行所必需的复杂操作。芯片的数字通信路径连接了所有的瓷砖和中央的数字处理单元。

在性能方面,该芯片在CIFAR-10图像数据集上展示了令人印象深刻的92.81%的准确率,标志着模拟内存计算的重要成就。该研究将模拟内存计算与数字处理单元和数字通信结构无缝集成,从而实现了更高效的计算引擎。该芯片的每单位面积的吉博操作每秒(GOPS)吞吐量超过了以往基于电阻性存储器的内存计算芯片的15倍以上,同时保持能源效率。

借助模拟到数字转换器、乘积累加计算能力和数字计算块的突破,IBM研究实现了快速和低功耗的模拟人工智能推理加速器芯片所需的许多关键组件。以前提出的加速器架构将众多模拟内存计算瓷砖与通过并行2D网格连接的专用数字计算核心相结合。这种愿景和硬件感知的训练技术预计将在可预见的未来在各种模型上提供与软件等效的神经网络准确性。

Leave a Reply

Your email address will not be published. Required fields are marked *