Press "Enter" to skip to content

Tag: ZenML

电动汽车的ZenML:从数据到效率预测

介绍 你曾经想过会有一个系统可以预测电动车的效率,用户可以轻松使用该系统吗?在电动车的世界里,我们可以非常准确地预测电动车的效率。这个概念现在已经进入现实世界,我们对Zenml和MLflow心存无比感激。在这个项目中,我们将深入探索技术,并了解如何将数据科学、机器学习和MLOps结合在一起,创造出这项美丽的技术,并且你将看到我们如何使用ZenML来研究电动车。 学习目标 在这篇文章中,我们将学到以下内容: 了解Zenml是什么,以及如何在端到端的机器学习流水线中使用它。 了解MLFlow在创建机器学习模型实验跟踪器中的作用。 探索机器学习模型的部署过程以及如何设置预测服务。 了解如何创建一个用户友好的Streamlit应用,与机器学习模型预测进行交互。 这篇文章是作为数据科学博览会的一部分发表的。 理解电动车效率 电动车的效率是指电动车将电池中的电能转化为行驶里程的效率。通常以每千瓦时(kWh)的里程来衡量。 电动机和电池的效率、重量、空气动力学和辅助负载等因素影响着电动车的效率。因此,很明显,如果我们优化这些方面,我们可以提高电动车的效率。对消费者来说,选择一个效率更高的电动车会带来更好的驾驶体验。 在这个项目中,我们将建立一个端到端的机器学习流水线,使用真实世界的电动车数据来预测电动车的效率。准确地预测效率可以指导电动车制造商优化设计。 我们将使用ZenML,一个MLOps框架,来自动化机器学习模型的训练、评估和部署工作流程。ZenML提供了元数据跟踪、工件管理和模型可重现性等能力,覆盖了机器学习生命周期的各个阶段。 数据收集 对于这个项目,我们将从Kaggle开始收集数据。Kaggle是一个在线平台,提供许多用于数据科学和机器学习项目的数据集。您可以从任何地方收集数据。通过收集这个数据集,我们可以对我们的模型进行预测。在这里是我的GitHub代码库,您可以找到所有的文件或模板 – https://github.com/Dhrubaraj-Roy/Predicting-Electric-Vehicle-Efficiency.git 问题陈述 高效的电动车是未来的趋势,但准确预测电动车的续航里程非常困难。 解决方案 我们的项目将数据科学和MLOps结合起来,为预测电动车的效率创建一个精确的模型,使消费者和制造商受益。 设置虚拟环境 为什么我们想要设置虚拟环境? 它帮助我们使项目突出,不与系统中的其他项目发生冲突。…

Leave a Comment