探索曼巴对序列建模的突破性方法,以其高效处理和先进的状态空间机制超越传统模型与曼巴一起潜入人工智能的未来
Leave a CommentTag: transformers
“没有秘密的是,类似BERT的模型在现代自然语言处理应用中发挥着基础性作用尽管它们在下游任务上表现出色,但大多数这些模型并非完美无缺…”
Leave a Comment在17世纪,勒内·笛卡尔提出了一个相对新的概念——格言“我思故我在”(“cogito ergo sum”)这个简单的表述成为了西方哲学的基础和…
Leave a Comment在首次亮相之后,BERT在各种自然语言处理任务中展示了惊人的结果,包括情感分析、文本相似度、问答等等从那时起,研究人员声名鹊起…
Leave a Comment在2019年,FastSpeech推动了神经文本到语音的前沿,通过提供显著的推理速度改进,同时保持强健性,以避免单词重复或遗漏它…
Leave a Comment“关注即是一切”的转换器革命对深度学习模型架构的设计产生了深远影响不久之后,BERT、RoBERTa、ALBERT、DistilBERT相继问世…
Leave a Comment在2017年的开创性论文“注意力就是一切”[0]中引入的Transformer架构,可以说是近年来深度学习史上最具影响力的突破之一,使得…
Leave a Comment也许你听说过这项技术,但你并没有完全理解它,尤其是PPO部分这个解释可能会有所帮助我们将关注文本到文本语言模型📝,例如…
Leave a Comment基于人工智能的文本生成显然已经进入了主流从自动化写作助手,到法律文件生成,市场营销内容生成,电子邮件撰写等等,没有什么…
Leave a Comment随着transformers继续解决类似于来自Open Graph Benchmark的图问题,理解图神经网络(GNNs)变得越来越重要即使自然语言是图所需的全部…
Leave a Comment在本文中,我们将深入研究Transformer网络中的注意力机制,特别是从编码器的角度来看我们将涵盖以下主题:我们将研究…
Leave a Comment在我的上一篇文章中,我向您展示了如何使用Meta AI刚刚发布的新Llama 2模型进行微调,以几行代码构建Python代码生成器这一次,我们将描述…
Leave a Comment“Transformer在AI领域产生了重大影响,甚至在整个世界范围内都如此该架构由多个组件组成,但正如原始论文中所命名的那样,‘注意力就是一切…’”
Leave a Comment介绍 Swin Transformer 是视觉 Transformer 领域的一项重大创新。Transformer 在各种任务中展示了出色的性能。在这些 Transformer 中,Swin Transformer 作为计算机视觉的骨干,提供了无与伦比的灵活性和可扩展性,以满足现代深度学习模型的需求。现在是时候发掘这个 Transformer 的全部潜力,见证其令人印象深刻的能力。 学习目标 本文旨在介绍 Swin Transformer,这是一类强大的分层视觉 Transformer。通过阅读本文,您应该了解以下内容: Swin Transformer 的关键特性 它们在计算机视觉模型中作为骨干的应用 Swin Transformer 在图像分类、物体检测和实例分割等各种计算机视觉任务中的优势。…
Leave a Comment大约两周前,生成式人工智能领域被Meta公司发布的新的Llama-2 AI模型所震惊它的前身Llama-1是LLM行业的一个突破点,因为…
Leave a Comment介绍 图像深度估计是指确定图像中物体与观察者的距离。这是计算机视觉中的一个重要问题,因为它有助于创建3D模型、增强现实和自动驾驶汽车等技术。过去,人们使用立体视觉或特殊传感器等技术来估计深度。但现在,有一种名为深度预测Transformer(DPTs)的新方法使用深度学习来进行深度估计。 DPTs是一种可以通过观察图像来学习估计深度的模型。在本文中,我们将通过实际编码来了解DPTs的工作原理、它们的用途以及在不同应用中可以做什么。 学习目标 了解DPTs(Dense Prediction Transformers)的概念及其在图像深度估计中的作用。 探索DPTs的架构,包括视觉Transformer和编码器-解码器框架的组合。 使用Hugging Face Transformer库实现DPT任务。 认识DPTs在各个领域中的潜在应用。 本文作为Data Science Blogathon的一部分发表。 理解深度预测Transformer 深度预测Transformer(DPTs)是一种独特的深度学习模型,专门用于估计图像中物体的深度。它们利用了一种特殊类型的架构,称为Transformer,最初是为处理语言数据而开发的。然而,DPTs将这种架构进行了调整和应用,以处理视觉数据。DPTs的一个关键优势是它们能够捕捉图像各个部分之间的复杂关系,并对跨越较长距离的模型依赖进行建模。这使得DPTs能够准确地预测图像中物体的深度或距离。 深度预测Transformer的架构 深度预测Transformer(DPTs)通过将视觉Transformer和编码器-解码器框架结合起来,对图像进行深度估计。编码器组件使用自注意机制捕捉和编码特征,增强了对图像不同部分之间关系的理解。这提高了特征分辨率,并允许捕捉细粒度的细节。解码器组件通过将编码特征映射回原始图像空间,利用上采样和卷积层等技术来重建密集的深度预测。DPTs的架构使得模型能够考虑场景的全局上下文和不同图像区域之间的模型依赖关系,从而得出准确的深度预测。 总之,DPTs利用视觉Transformer和编码器-解码器框架对图像进行深度估计。编码器捕捉特征并使用自注意机制对其进行编码,解码器通过将编码特征映射回原始图像空间来重建密集的深度预测。这种架构使得DPTs能够捕捉细粒度的细节、考虑全局上下文并生成准确的深度预测。 使用Hugging Face Transformer实现DPT 我们将使用Hugging Face…
Leave a Comment在这个由4部分组成的系列中,我们将使用PyTorch深度学习技术一步步地从头实现图像分割这一部分将重点介绍实现基于Vision Transformer的模型…
Leave a Comment介绍 使用预训练的ViT模型进行图像描述可以看作是一种文本或书面描述,位于图像下方,旨在提供对图像细节的描述。它是将图像转换为文本描述的任务。通过连接视觉(图像)和语言(文本)来完成。在本文中,我们使用PyTorch后端,使用视觉变换器(ViT)作为主要技术,在图像中实现了这一目标。目标是展示一种使用转换器,特别是ViTs,利用经过训练的模型生成图像标题的方法,而无需从头开始重新训练。 来源:Springer 随着社交媒体平台和在线图片使用的当前趋势,掌握这种技能的好处很多,可以出于多种原因进行描述、引用、帮助视力受损者,甚至是搜索引擎优化。这使得学习这种技术对涉及图像的项目非常有用。 学习目标 图像描述的概念 使用ViTs进行图像捕捉 使用预训练模型进行图像描述 使用Python利用转换器 您可以在此GitHub仓库中找到使用的全部代码。 本文是数据科学博客马拉松的一部分。 什么是Transformer模型? 在我们研究ViT之前,让我们先了解一下Transformer。自从Google Brain于2017年引入transformers以来,它引起了人们对其在NLP方面的能力的兴趣。Transformer是一种深度学习模型,其特点是采用自我关注,不同地加权输入数据的每个部分的重要性。并且主要用于自然语言处理(NLP)领域。 Transformer处理序列输入数据,例如自然语言,但transformer一次处理整个输入。借助注意机制,任何输入序列的位置都有上下文。这种效率允许更多的并行化,减少训练时间,同时提高效率。 Transformer体系结构 现在让我们看一下transformers的体系结构组成。Transformer体系结构主要由编码器-解码器结构组成。Transformer体系结构的编码器-解码器结构在一篇著名的论文中被提出,标题为“Attention Is All You Need”。 编码器由层组成,负责逐层处理输入,而解码器层接收编码器输出并生成解码输出。简单地说,编码器将输入序列映射到序列,然后将其馈送到解码器。解码器然后生成一个输出序列。 什么是Vision Transformers? 由于本文展示了ViTs在图像描述中的实际用途,因此也有必要了解ViTs的工作原理。Vision…
Leave a Comment介绍 深入了解Transformer模型的好方法是学习注意机制。在这方面,特别是在学习其他类型的注意机制之前学习多头注意力也是一个不错的选择。这是因为这个概念往往比较容易理解。 注意机制可以被视为可以添加到常规深度学习模型中的神经网络层。其目的是使模型专注于使用分配的权重来关注输入的特定部分,从而权衡它们的价值。我们将进一步详细了解注意机制,使用多头注意力机制。 学习目标 注意机制的概念 多头注意力的含义 Transformer中多头注意力的架构 其他类型的注意机制简介 本文是数据科学博客马拉松的一部分。 了解注意机制 我们可以从人类心理学的角度开始看这个概念。在心理学中,注意力是集中意识在某些事件上,以便排除其他刺激的影响。这意味着即使有其他干扰,我们仍然会专注于我们选择的事物。注意力有选择地集中在整体的一个离散部分。 这个概念是Transformer中使用的。它们能够集中精力关注其输入的目标部分,并忽略其余部分。这可以使它们以非常有效的方式行动。 什么是多头注意力? 多头注意力是Transformer中的一个中心机制,类似于ResNet50架构中的跳跃连接。有时需要关注序列中的多个其他点。使用找到整体平均值的方法将不会使权重分布,因此不会给予多样化的值作为权重,这就引出了创建多个独立的注意机制以形成多个注意力机制的扩展的想法。现在的实现在单个特征上呈现多个不同的查询-键-值三元组。 来源:Pngwing.com 计算是这样进行的,注意模块在多次迭代中执行,组织成称为注意头的并行层。每个独立的头独立处理输入序列和相关输出序列元素。每个头部的累积分数然后组合以获得最终的注意分数,其中包含输入序列的每个细节。 数学表达式 具体而言,如果我们有一个关键字和一个值矩阵,我们可以将值转换为ℎ个子查询,子关键字和子值,这些将独立地通过注意力传递。连接将给出一个头,并使用最终的权重矩阵将它们组合起来。 可学习的参数是分配给各个头部的注意力中的值,其中各种参数称为多头注意力层。下面的图示说明了这个过程。 让我们简要地看一下这些变量。其中X的值是单词嵌入矩阵的连接。 矩阵解释 查询:它是一个特征向量,提供有关序列中目标的洞察力。它在序列上提出请求,需要关注哪些部分。 关键字:这是描述元素中包含的内容的特征向量。它突出显示提供元素的身份,并通过查询提供注意力。 值:处理输入序列,每个输入元素使用一个值来知道提供平均值的内容。 评分函数:创建评分函数时,我们将查询和关键字指定为其输出的权重,称为查询-关键字对。…
Leave a Comment