介绍 大型语言模型(LLMs)是一类特定的人工智能模型,旨在理解和生成类似于人类的文本。术语“大型”通常通过它们拥有的参数数量来量化。例如,OpenAI的GPT-3模型有1750亿个参数。可以将其用于各种任务,例如文本翻译、回答问题、写作论文、总结文本。尽管有很多资源展示了LLMs的能力,并提供了有关如何设置聊天应用程序的指导,但很少有人深入研究它们在现实业务场景中的适用性。在本文中,您将学习如何使用LangChain和Flan-T5 XXL构建基于大型语言的应用程序来创建文档查询系统。 学习目标 在深入研究技术细节之前,让我们确定本文的学习目标: 了解如何利用LangChain构建基于大型语言的应用程序 简要介绍文本到文本框架和Flan-T5模型 如何使用LangChain和任何LLM模型创建文档查询系统 现在让我们深入了解这些部分,以理解每个概念。 本文是Data Science Blogathon的一部分。 LangChain在构建LLM应用程序中的作用 LangChain框架旨在开发各种应用程序,例如聊天机器人、生成式问答(GQA)和摘要,以发挥大型语言模型(LLMs)的能力。LangChain为构建文档查询系统提供了全面的解决方案。这涉及通过分块对语料库进行预处理,将这些块转换为向量空间,在提出查询时识别相似块,并利用语言模型将检索到的文档细化为合适的答案。 Flan-T5模型概述 Flan-T5是谷歌研究人员开发的一种商业可用的开源LLM。它是T5(文本到文本转换Transformer)模型的变体。T5是一种先进的语言模型,它通过将NLP任务转换为基于文本的格式来训练。FLAN是Finetuned Language Net的缩写。 让我们深入构建文档查询系统 我们可以利用LangChain和Flan-T5 XXL模型在Google Colab的免费版中构建此文档查询系统。要在Google Colab中执行以下代码,我们必须选择“T4 GPU”作为我们的运行时。按照以下步骤构建文档查询系统: 1:导入必要的库…
Leave a Comment