深入了解Streamlit、OpenAI和Elasticsearch的无缝集成,打造出优化用户体验的复杂智能聊天机器人
Leave a CommentTag: Elasticsearch
· 从我们离开的地方开始,Elasticsearch
∘ 示例数据集
∘ 理解ElasticSearch查询
∘ 理解响应
∘ 基本搜索查询
· 词汇搜索
· 问题…
聊天机器人已成为许多组织用于各种目的的越来越标准和有价值的界面。它们在不同行业中有许多应用,例如为客户提供个性化的产品推荐,提供全天候的客户支持来解决查询问题,协助客户预订等等。本文探讨了创建专门用于客户互动的FAQ聊天机器人的过程。FAQ聊天机器人解答特定领域内的问题,利用预定义的问题列表和相应的答案。这种类型的聊天机器人依赖于语义问题匹配作为其基本机制。 学习目标 了解BERT模型的基础知识 了解Elasticsearch及其在聊天机器人中的应用 创建聊天机器人的机制 在Elasticsearch中进行索引和查询 本文是作为Data Science Blogathon的一部分发布的。 BERT是什么? BERT(Bidirectional Encoder Representations from Transformers)是谷歌于2018年发布的一个大型语言模型。与单向模型不同,BERT是基于Transformer架构的双向模型。它通过考虑句子中在它之前和之后出现的单词来学习理解单词的上下文,实现更全面的理解。 BERT面临的一个主要挑战是无法在自然语言处理任务中达到最先进的性能。主要问题是标记级别的嵌入在文本相似性方面无法有效使用,导致在生成句子嵌入时性能较差。 然而,为了解决这个挑战,开发了Sentence-BERT(SBERT)。SBERT基于一个Siamese网络,它每次接收两个句子,并使用BERT模型将它们转换为标记级别的嵌入。然后,它对每组嵌入应用汇聚层以生成句子嵌入。在本文中,我们将使用SBERT进行句子嵌入。 Elasticsearch是什么? Elasticsearch是一个开源的搜索和分析引擎,具有强大的实时处理能力、高度可扩展性,并专为处理大规模数据而设计。它基于Apache Lucene库开发,提供全文搜索功能。Elasticsearch具有高度可扩展性,因为它提供了一个高度分布式的网络,可以跨多个节点进行扩展,提供高可用性和容错性。它还提供了一个灵活而强大的RESTful API,允许使用HTTP请求与搜索引擎进行交互。它支持各种编程语言,并提供客户端库以便于应用程序集成。 如何使用BERT和Elasticsearch创建聊天机器人? 本文将教我们如何使用预训练的BERT和Elasticsearch创建FAQ聊天机器人。 步骤1)安装SBERT库 #安装sentence…
Leave a Comment在过去的22个月中,我一直担任站点搜索工程师,使用Elasticsearch来帮助提高我们餐厅平台的相关性我总共部署了83个版本,其中包括3个…
Leave a Comment