介绍 在计算机视觉领域中,卷积神经网络(CNN)已经重新定义了图像分析和理解的领域。这些强大的网络已经在图像分类、物体检测和语义分割等任务中取得了突破。它们为医疗保健、自动驾驶等领域的各种应用奠定了基础。 然而,随着对更具上下文感知和稳健模型的需求不断增长,传统的卷积层在捕捉广泛的上下文信息方面面临限制。这导致了对能够提高网络理解更广泛上下文能力的创新技术的需求,而不会显著增加计算复杂性。 介绍扩张卷积(Atrous Convolution),这是一种颠覆卷积神经网络中常规规则的突破性方法。扩张卷积,也被称为空洞卷积,通过在深度学习领域引入新的维度,使网络能够在不显著增加计算成本或参数的情况下捕捉更广泛的上下文。 学习目标 了解卷积神经网络的基本知识,以及它们如何处理视觉数据来理解图像。 了解扩张卷积如何改进传统卷积方法,从而在图像中捕捉更大的上下文。 探索使用扩张卷积的知名CNN架构,例如DeepLab和WaveNet,以了解它如何提高它们的性能。 通过实际示例和代码片段,获得对扩张卷积在CNN中应用的实际理解。 本文是Data Science Blogathon的一部分。 理解卷积神经网络:它的工作原理 卷积神经网络(CNN)是一类主要用于分析图像和视频等视觉数据的深度神经网络。它们受到人类视觉系统的启发,在涉及视觉数据的模式识别任务中非常有效。以下是详情: 卷积层:CNN由多个层组成,其中卷积层是核心。这些层使用卷积运算将可学习的滤波器应用于输入数据,从图像中提取各种特征。 汇聚层:在卷积之后,通常会使用汇聚层来减小空间维度,压缩卷积层学到的信息。常见的汇聚操作包括最大汇聚或平均汇聚,它们减小表示的大小同时保留关键信息。 激活函数:在卷积和汇聚层之后使用非线性激活函数(例如ReLU)来引入非线性,让网络能够学习数据中的复杂模式和关系。 全连接层:在CNN末尾,通常使用全连接层。这些层整合前面层提取的特征,并执行分类或回归任务。 逐点卷积:逐点卷积,也被称为1×1卷积,是CNN中用于降低维度和特征组合的技术。它涉及将1×1滤波器应用于输入数据,有效减少输入通道数,并允许跨通道组合特征。逐点卷积通常与其他卷积操作一起使用,以增强网络捕捉数据中的复杂模式和关系的能力。 可学习参数:CNN依赖于在训练过程中更新的可学习参数(权重和偏置)。训练过程包括前向传播,其中输入数据通过网络,以及反向传播,根据网络的性能调整参数。 从扩张卷积开始 扩张卷积,也被称为空洞卷积,是一种引入了参数扩张率的卷积操作。与常规卷积将滤波器应用于相邻像素不同,扩张卷积通过在它们之间引入间隙来分散滤波器的参数,由扩张率来控制。这个过程扩大了滤波器的感受野,而不增加参数的数量。简单来说,它允许网络在不增加复杂性的情况下从输入数据中捕获更广泛的上下文。 扩张率决定了卷积的每一步之间跳过多少像素。1的扩张率表示常规卷积,而较高的扩张率跳过更多的像素。这个扩大的感受野能够捕获更大的上下文信息,而不增加计算成本,使网络能够高效地捕获局部细节和全局上下文。 本质上,扩张卷积有助于将更广泛的上下文信息整合到卷积神经网络中,从而更好地对数据中的大规模模式进行建模。它通常用于需要关注不同尺度上的背景信息的应用,例如计算机视觉中的语义分割或自然语言处理任务中处理序列。…
Leave a CommentTag: CNNs
介绍 卷积神经网络(CNNs)在理解图像和模式上起着关键作用,改变了深度学习的领域。旅程始于Yan引入LeNet架构,如今,我们拥有一系列可供选择的CNNs。传统上,这些网络在将事物分类时严重依赖于全连接层。但等等,有些变化正在发生。我们正在探索一种使用逐点卷积(Pointwise Convolution)的不同架构,这是CNNs的一种新鲜改进方法。就像走上一条新的道路一样。这种方法挑战了传统全连接层的常规用法,带来了一些酷炫的优势,使我们的网络更智能、更快。让我们一起来探索逐点卷积的奥秘,发现它如何帮助我们的网络运行更高效,表现更好。 学习目标 了解从早期模型(如LeNet)到现今多种不同架构使用中的卷积神经网络(CNNs)的发展历程。 探索传统全连接层在CNNs中与计算强度和空间信息丢失相关的问题。 探索逐点卷积作为CNNs中高效特征提取的替代方法。 培养实际实现CNNs中的逐点卷积的实践能力,包括网络修改和超参数调整等任务。 本文是《数据科学博客马拉松》的一部分。 理解全连接层 在传统的卷积神经网络(CNNs)中,全连接层在连接每一层的所有神经元上起着关键作用,形成了密集的互联结构。在图像分类等任务中使用这些层,网络通过学习将特定特征与特定类别关联起来。 主要观点 全局连接:全连接层创建了全局连接,使得一层中的每个神经元都与后续层中的每个神经元相连。 参数强度:全连接层中的参数数量之多可能大幅增加模型的参数数量。 空间信息丢失:在全连接层中对输入数据进行扁平化可能导致原始图像的空间信息丢失,这在特定应用中可能是一个缺点。 计算强度:与全连接层相关的计算负荷可能非常大,特别是当网络规模扩大时。 实际应用 在卷积层之后:全连接层通常在CNN架构中的卷积层之后使用,卷积层从输入数据中提取特征。 稠密层:在某些情况下,全连接层被称为“稠密”层,强调其连接所有神经元的作用。 为什么需要变革? 现在,我们对普通卷积神经网络(CNNs)中的全连接层有了基本的了解,让我们谈谈为什么有些人正在寻找不同的东西。虽然全连接层工作得很好,但它们也面临一些挑战。它们可能会给计算机带来一些负担,使用大量参数,并且有时会丢失图片的关键细节。 我们为什么要探索新的方法: 全连接的阻碍:将全连接层视为一个工作能力强,但存在一些问题的人-它们很有效,但也带来了挑战。 寻找更智能的方式:人们寻求更创新、更高效的建立这些网络的方式,而不带来这些阻碍。 让事情变得更好:目标是使这些网络工作得更好——更快、更智能、更节省计算资源。…
Leave a Comment