Press "Enter" to skip to content

242 search results for "HuggingFace"

LLM精细调校与PEFT技术

介绍 语言模型,简称LLM,已经席卷了自然语言处理领域。它们是强大的人工智能系统,旨在生成类似于人类的文本、理解和响应自然语言输入。本质上,它们旨在模仿人类的语言理解和生成。让我们开始一段旅程,了解微调LLM的复杂性,并探索改变领域的创新PEFT(Prompt Engineering and Fine Tuning)技术。 学习目标: 理解语言模型中微调的概念。 理解PEFT技术及其重要性。 探索有效系数选择的技术。 理解PEFT技术 首先,让我们解读这个缩略词——PEFT代表参数效率微调。但在这个背景下,参数效率意味着什么,为什么它很重要呢? 在机器学习中,模型实质上是由数以万计的系数或权重构成的复杂数学方程。这些系数决定模型的行为,并使其能够从数据中学习。当我们训练一个机器学习模型时,我们调整这些系数以最小化误差并进行准确的预测。对于可以拥有数十亿参数的LLM来说,在训练期间改变所有参数可能会消耗大量的计算资源和内存。 这就是微调的作用。微调是将已训练好的模型进行微调,以适应特定任务的过程。它假设模型已经具备了对语言的基本理解,并专注于使其在特定领域表现出色。 作为微调的子集,PEFT严肃地考虑了参数效率。与其改变模型的所有系数,PEFT选择其中的一个子集,从而大大减少了计算和内存需求。当训练大型模型(如Falcon 7B)时,这种方法特别有用。 训练、微调和提示工程:主要区别 在深入研究PEFT之前,让我们澄清训练、微调和提示工程之间的区别。这些术语经常被互换使用,但在LLM的背景下具有特定的含义。 训练:当一个模型从头开始创建时,它经历了训练。这涉及调整模型的所有系数或权重,以学习数据中的模式和关系。这就像是将模型教授语言的基础知识。 微调:微调假设模型已经具备了对语言的基本理解(通过训练实现)。它涉及有针对性地进行调整,以使模型适应特定的任务或领域。将其视为对受过良好教育的模型进行细化,以实现特定工作,如回答问题或生成文本。 提示工程:提示工程涉及制作输入提示或问题,引导LLM提供所需的输出。它是根据您的需求定制与模型的交互方式。 PEFT在微调阶段起着重要作用,我们有选择地修改模型的系数,以提高其在特定任务上的性能。 探索LoRA和QLoRA用于系数选择 现在,让我们深入了解PEFT的核心,并了解如何高效选择系数的子集。两种技术,LoRA(低秩采用)和QLoRA(量化+低秩采用),用于实现这一目的。 LoRA(低秩采用):LoRA是一种技术,它认识到模型中的并非所有系数都同等重要。它利用了一些权重对模型产生的影响比其他权重更大的事实。在LoRA中,通过因式分解将大型权重矩阵分为两个较小的矩阵。因子“R”决定选择了多少个系数。通过选择较小的“R”,我们减少了需要进行调整的系数数量,使微调过程更高效。…

Leave a Comment

使用Amazon SageMaker上的多模型模型构建一个图像到文本生成AI应用程序

在本篇文章中,我们将提供流行的多模态模型概述我们还将演示如何在Amazon SageMaker上部署这些预训练模型此外,我们还将讨论这些模型的各种应用,特别侧重于一些现实场景,如电子商务中的零样本标签和属性生成,以及从图像中自动生成提示语

Leave a Comment

伦理与社会通讯第5期:“拥抱脸”走进华盛顿及其他2023年夏日的思考

关于AI中“伦理”最重要的一点是它与价值观有关。伦理不告诉你什么是对的或错的,它提供了一个价值观的词汇表,透明度、安全性、公正性,并提供了优先考虑它们的框架。今年夏天,我们能够将我们对AI中的价值观的理解带给欧盟、英国和美国的立法者,帮助塑造AI监管的未来。这就是伦理的闪光之处:在还没有法律制定的情况下帮助开辟前进道路。 符合Hugging Face对开放和问责的核心价值观,我们在这里分享了我们所说和所做的一些内容。其中包括我们CEO克莱姆在美国国会作证和美国参议院AI洞察论坛上的发言;我们对欧盟AI法案的建议;我们对NTIA关于AI问责的意见;以及我们首席伦理科学家梅格在民主党代表团的意见。在许多这些讨论中,经常出现的问题是为什么AI中的开放性是有益的,我们在这里分享了我们对这个问题的回答的一些内容here。 顺应我们的核心价值观民主化,我们也花了很多时间公开演讲,并有幸与记者进行交流,以帮助解释目前AI领域的情况。这包括: 莎夏在AI的能源使用和碳排放方面的评论(The Atlantic,The Guardian,两次,New Scientist,The Weather Network,华尔街日报,两次),以及参与了华尔街日报关于这一主题的发表的一部分;对AI末日风险的看法(Bloomberg,The Times,Futurism,Sky News);关于生成AI中的偏见的详细信息(Bloomberg,NBC,Vox);解释边缘化工人如何为AI创建数据(The Globe and Mail,The Atlantic);强调AI中的性别歧视(VICE);以及在MIT Technology Review上就AI文本检测、开放模型发布和AI透明度发表见解。 内森就语言模型和开放发佈的最新进展发表评论(WIRED,VentureBeat,Business Insider,Fortune)。 梅格就AI和虚假信息发表评论(CNN,半岛电视台,纽约时报);关于在AI中公平处理艺术家作品的需要(华盛顿邮报);生成AI的进展及其与更大利益的关系(华盛顿邮报,VentureBeat);通过报告解释记者如何更好地塑造AI的发展(CJR);以及解释AI中的基本统计概念困惑度(Ars Technica);并强调性别歧视的模式(Fast Company)。 艾琳就理解AI的监管环境发表评论(MIT Technology…

Leave a Comment

使用推理API部署AI漫画工厂

我们最近宣布了我们的新产品PROs的推论,使更大的模型对更广泛的用户群体可用。这个机会为使用Hugging Face作为平台运行最终用户应用程序开启了新的可能性。 这样一个应用程序的示例是AI漫画工厂 – 一个极其受欢迎的空间。成千上万的用户尝试使用它创建自己的AI漫画画布,从而形成了自己的常用用户社区。他们分享自己的作品,甚至有些人还打开了拉取请求。 在本教程中,我们将向您展示如何fork和配置AI漫画工厂以避免长时间等待,并使用推理API部署到您自己的私有空间。这不需要强大的技术技能,但建议了解API、环境变量以及LLMs和Stable Diffusion的基本理解。 入门 首先,确保您注册了PRO Hugging Face账户,因为这将使您能够访问Llama-2和SDXL模型。 AI漫画工厂的工作原理 AI漫画工厂与在Hugging Face上运行的其他空间有所不同:它是一个使用Docker部署的NextJS应用程序,基于客户端-服务器方法,需要两个API才能工作: 语言模型API(目前为Llama-2) 稳定扩散API(目前为SDXL 1.0) 复制空间 要复制AI漫画工厂,请转到该空间并单击“复制”: 您会发现空间所有者、名称和可见性已经为您填好,所以您可以保留这些值。 您的空间副本将在一个不需要太多资源的Docker容器中运行,因此您可以使用最小的实例。官方的AI漫画工厂空间使用较大的CPU实例,因为它满足了一个庞大的用户群体。 要在您的帐户下操作AI漫画工厂,您需要配置您的Hugging Face令牌: 选择LLM和SD引擎 AI漫画工厂支持各种后端引擎,可以使用两个环境变量进行配置:…

Leave a Comment

使用密集预测变换进行图像语义分割

介绍 本文将介绍一种计算机视觉技术——图像语义分割。虽然听起来很复杂,但我们会一步一步解析它,并介绍一种使用密集预测变换器(DPTs)实现的图像语义分割概念,这是从Hugging Face的集合中选择的。使用DPTs引入了一个具有非同寻常能力的新阶段。 学习目标 DPTs相对于传统对远程连接的理解的比较。 使用Python实现使用DPT进行深度预测的语义分割。 探索DPT设计,理解它们独特的特点。 本文是数据科学博文马拉松的一部分。 什么是图像语义分割? 想象一下,你有一张图像,并希望根据图像中每个像素的表示对其进行标注。这就是图像语义分割的概念。它可以用于计算机视觉,区分汽车和树木,或者分离图像的不同部分;这一切都是为了智能地标记像素。然而,真正的挑战在于理解对象之间的上下文和关系。让我们将其与处理图像的旧方法进行比较。 卷积神经网络(CNNs) 第一个突破是使用卷积神经网络来处理涉及图像的任务。然而,CNNs有一些限制,尤其是在捕捉图像中的长距离连接方面。想象一下,如果你试图理解图像中不同元素在长距离上是如何相互作用的,传统的CNNs会遇到困难。这就是我们赞美DPT的地方。这些模型基于强大的变换器架构,具备捕捉关联的能力。我们将在接下来看到DPTs。 什么是密集预测变换器(DPTs)? 要理解这个概念,想象一下将我们之前在NLP任务中使用的变换器的强大能力与图像分析相结合。这就是密集预测变换器背后的概念。它们就像图像世界中的超级侦探一样。它们不仅能够标记图像中的每个像素,还可以预测每个像素的深度——这在某种程度上提供了有关每个对象与图像之间的距离的信息。我们将在下面看到这一点。 DPT架构工具箱 DPTs有不同类型,每种类型都有其“编码器”和“解码器”层。让我们在这里看一下两种流行的类型: DPT-Swin-Transformer:将其想象为具有10个编码器层和5个解码器层的超级变换器。它擅长理解图像中不同级别的元素之间的关系。 DPT-ResNet:这个类型就像是一个聪明的侦探,具有18个编码器层和5个解码器层。它善于发现远距离对象之间的联系,同时保持图像的空间结构完整性。 关键特点 以下是关于DPTs如何使用一些关键特点的更详细说明: 分层特征提取:就像传统的卷积神经网络(CNNs)一样,DPTs从输入图像中提取特征。然而,它们采用一种分层的方法,将图像分为不同层次的细节。正是这种层次结构有助于捕捉局部和全局上下文,使模型能够理解不同尺度上对象之间的关系。 自注意机制:这是DPTs的核心,受原始变换器架构启发,使模型能够捕捉图像内的长程依赖关系,并学习像素之间的复杂关系。每个像素都考虑来自所有其他像素的信息,使模型对图像有整体的理解。 使用DPTs进行图像语义分割的Python演示 我们将在下面看到DPTs的实现。首先,让我们通过安装Colab上未预安装的库来设置环境。您可以在这里或https://github.com/inuwamobarak/semantic-segmentation找到此代码。 首先,我们安装并设置环境。…

Leave a Comment

如何实践数据中心化人工智能并使人工智能改善自身数据集

编辑注:Jonas Mueller是本届西部ODSC大会的发言人,将于10月30日至11月2日发表讲话一定要去听听他的演讲“如何实践以数据为中心的人工智能,并让人工智能提升自身数据集”机器学习模型的优劣取决于它们所训练的数据的质量….

Leave a Comment

“机器学习工程师的LLMOps入门指南”

介绍 OpenAI发布的ChatGPT引发了人们对大型语言模型(LLMs)的兴趣,现在人人都在谈论人工智能。但这不仅仅是友好的对话;机器学习(ML)社区引入了一个新术语叫做LLMOps。我们都听说过MLOps,但LLMOps又是什么呢?嗯,这就是关于如何在整个生命周期中处理和管理这些强大的语言模型的一切。 LLMs正在改变我们创建和维护基于人工智能的产品的方式,这种转变导致了对新工具和最佳实践的需求。在本文章中,我们将详述LLMOps及其背景。我们还将探讨如何使用LLMs构建人工智能产品与传统机器学习模型的区别。此外,由于这些区别,我们还将比较MLOps(机器学习运营)与LLMOps的不同之处。最后,我们将讨论在LLMOps领域可以预期的令人兴奋的发展。 学习目标: 深入了解LLMOps及其发展。 通过示例学习使用LLMOps构建模型。 了解LLMOps与MLOps的区别。 对LLMOps的未来有所了解。 本文作为数据科学博文马拉松的一部分发表。 什么是LLMOps? LLMOps代表着大型语言模型操作,类似于MLOps,但专门为大型语言模型(LLMs)设计。它需要使用新的工具和最佳实践来处理与LLM驱动的应用程序有关的一切,从开发到部署和持续维护。 为了更好地理解这个概念,让我们来解释一下LLMs和MLOps的含义: LLMs是可以生成人类语言的大型语言模型。它们拥有数十亿的参数,并且是在数十亿的文本数据上进行训练的。 MLOps(机器学习运营)是一组用于管理机器学习驱动应用程序生命周期的工具和实践。 现在我们已经解释了基本概念,让我们更深入地探讨这个话题。 关于LLMOps的热潮是什么? 首先,像BERT和GPT-2这样的LLMs自2018年以来就已经存在。然而,现在,在近五年后,我们才遇到了LLMOps这个概念的迅猛崛起。主要原因是LLMs在2022年12月发布ChatGPT时受到了很多媒体的关注。 自那时以来,我们看到了许多不同类型的应用程序充分利用LLMs的强大能力。这包括从熟悉的ChatGPT之类的聊天机器人,到用于编辑或摘要的更个人化的写作助手(例如Notion AI),以及用于文案撰写的高效助手(例如Jasper和copy.ai)。它还包括用于编写和调试代码的编程助手(例如GitHub Copilot)、测试代码的助手(例如Codium AI)以及识别安全问题的助手(例如Socket AI)。 随着越来越多的人将LLM驱动的应用程序开发和投入生产,人们开始贡献他们的经验。 “用LLMs做一些酷炫的东西很容易,但让它们适合投入生产非常困难。” –…

Leave a Comment

构建功能强大的聊天助手,无需OpenAI密钥,适用于PDF和文章

介绍 自然语言处理领域正在迅速扩张,特别是随着大型语言模型的诞生,它们彻底改变了这个领域并使其对每个人都可访问。在本文中,我们将探索并实现一些NLP技术,创建一个功能强大的聊天助手,可以根据给定的文章(或PDF)使用开源库回答您的问题,而无需OpenAI API密钥。 本文作为数据科学博文马拉松的一部分发表。 工作流程 应用程序的工作流程如下所示: 用户提供一个PDF文件或文章的URL,提出一个问题,应用程序将根据提供的来源尝试回答问题。 我们将使用PYPDF2库(对于PDF文件)或BeautifulSoup库(对于文章URL)提取内容。然后,我们将使用langchain库的CharacterTextSplitter将其分成块。 对于每个块,我们使用all-MiniLM-L6-v2模型计算其对应的词嵌入向量,将句子和段落映射到384维的稠密向量空间(词嵌入只是将单词/句子表示为向量的技术),并且相同的技术应用于用户的问题。 这些向量作为输入传递给由<sentence_transformers 提供的语义搜索函数,该函数是用于最先进的句子、文本和图像嵌入的Python框架。</sentence_transformers  该函数将返回可能包含答案的文本块,然后问答模型将基于语义搜索和用户问题的输出生成最终答案。 注意 所有提到的模型都可以通过API访问,只需使用HTTP请求即可。 代码将使用Python编写。 FAQ-QN是一个关键词,表示您应该查看常见问题解答部分,特别是第N个问题,以获取更多详情。 实现 在本节中,我将只关注实现部分,详细信息将在常见问题解答部分提供。 依赖项 我们首先下载依赖项,然后导入它们。 pip install -r requirements.txt import torch…

Leave a Comment

使用Amazon SageMaker改善Llama 2模型的吞吐性能

我们正处在机器学习(ML)广泛应用的令人兴奋的转折点上,我们相信大多数客户体验和应用将通过生成式人工智能得到重新创造生成式人工智能能够创造新的内容和想法,包括对话、故事、图像、视频和音乐与大多数人工智能一样,生成式人工智能是由机器学习模型驱动的,这些模型非常庞大[…]

Leave a Comment

来自俄勒冈大学和Adobe的研究人员推出了CulturaX:一个面向大型语言模型(LLM)开发的多语言数据集,其中包含167种语言的6.3万亿个标记

通过显著提高广泛任务的最新性能和揭示新的新兴技能,大型语言模型(LLM)对NLP研究和应用产生了深远影响。为了将输入文本编码为表示向量,已经进行了仅编码器模型的研究;为了创建文本,已经研究了仅解码器模型;为了完成序列到序列的生成,已经研究了编码器-解码器模型。模型大小和训练数据集的指数级增长,这两者都是最大性能的扩展率所需的,是LLM卓越能力背后的主要推动力。例如,尽管BERT模型只包含几亿个参数,但更现代的基于GPT的模型现在包含数千亿个参数。 庞大的模型大小和庞大的训练数据集是提升大型语言模型(LLM)具有惊人学习能力的主要要素。随着NLP的发展,LLM已逐渐向公众开放,以鼓励进一步的研究和实际应用。然而,这些LLM的训练数据集通常只提供部分,特别是对于最新的最先进模型。需要进行大量数据清理和去重,以创建高质量的LLM训练数据。因此,对训练数据更加开放的需求,阻碍了复制发现和推进LLM中的幻觉和偏见研究领域的努力。在多语言学习场景中,这些困难在通常不充分收集和清理多语言文本集合的情况下更加复杂。因此,目前没有一个可以用于跨语言训练LLM的良好开源数据集。CulturaX是由俄勒冈大学和Adobe Research的学术界合作开发的,包括167种语言的63万亿个标记的大型多语言数据集,旨在解决这个问题。为了确保模型训练的最高质量,数据集经过严格的处理流程,包括多个清理和去重的步骤。这些过程包括识别数据集中的语言、使用URL过滤数据集、使用度量标准清理数据集、优化文档和去重数据。 CulturaX经过全面的文档级清理和去重,以确保跨语言训练LLM的最高质量。数据清理过程使用完整的流水线来消除不准确的信息。这需要消除不准确的语言识别、有毒数据和非语言材料等干扰因素。 主要特点 CulturaX是迄今为止最大的经过全面清理和去重的开源多语言数据集,可用于LLM和NLP应用。 CulturaX提供了一个多语言、开源和庞大的数据集,具有立即可用和高质量的数据,可用于训练LLM,解决当前数据集的许多问题。 虽然存在包含各种语言文本数据的多语言开源数据集,如mC4,但它们的质量和规模不符合高效训练LLM的要求,特别是生成模型如GPT。例如,如介绍中所提到的,mC4和OSCAR都没有提供文档级模糊去重。mC4的语言识别使用cld3的结果较差,这是另一个缺点。虽然CC100确实包含2018年以后的数据,但BigScience ROOTS只为46种语言提供了部分数据的样本。 HuggingFace的CulturaX的完整公开发布将有助于进一步研究多语言LLM及其应用。在这里查看https://huggingface.co/datasets/uonlp/CulturaX  您应该了解一下CulturaX,这是一个包含167种语言的新的多语言数据集。经过全面的工作流程清理和去重后,数据集中含有63万亿个标记。作为一个庞大而高质量的数据集,CulturaX可以轻松用于训练各种语言的有效LLM。这些信息对公众免费提供,并且研究人员希望它可以激发进一步的语言习得研究和实际应用。

Leave a Comment

“解锁LangChain和Flan-T5 XXL | 高效文档查询指南”

介绍 大型语言模型(LLMs)是一类特定的人工智能模型,旨在理解和生成类似于人类的文本。术语“大型”通常通过它们拥有的参数数量来量化。例如,OpenAI的GPT-3模型有1750亿个参数。可以将其用于各种任务,例如文本翻译、回答问题、写作论文、总结文本。尽管有很多资源展示了LLMs的能力,并提供了有关如何设置聊天应用程序的指导,但很少有人深入研究它们在现实业务场景中的适用性。在本文中,您将学习如何使用LangChain和Flan-T5 XXL构建基于大型语言的应用程序来创建文档查询系统。 学习目标 在深入研究技术细节之前,让我们确定本文的学习目标: 了解如何利用LangChain构建基于大型语言的应用程序 简要介绍文本到文本框架和Flan-T5模型 如何使用LangChain和任何LLM模型创建文档查询系统 现在让我们深入了解这些部分,以理解每个概念。 本文是Data Science Blogathon的一部分。 LangChain在构建LLM应用程序中的作用 LangChain框架旨在开发各种应用程序,例如聊天机器人、生成式问答(GQA)和摘要,以发挥大型语言模型(LLMs)的能力。LangChain为构建文档查询系统提供了全面的解决方案。这涉及通过分块对语料库进行预处理,将这些块转换为向量空间,在提出查询时识别相似块,并利用语言模型将检索到的文档细化为合适的答案。 Flan-T5模型概述 Flan-T5是谷歌研究人员开发的一种商业可用的开源LLM。它是T5(文本到文本转换Transformer)模型的变体。T5是一种先进的语言模型,它通过将NLP任务转换为基于文本的格式来训练。FLAN是Finetuned Language Net的缩写。 让我们深入构建文档查询系统 我们可以利用LangChain和Flan-T5 XXL模型在Google Colab的免费版中构建此文档查询系统。要在Google Colab中执行以下代码,我们必须选择“T4 GPU”作为我们的运行时。按照以下步骤构建文档查询系统: 1:导入必要的库…

Leave a Comment

三维高斯点渲染简介

3D高斯喷洒是一种在《实时辐射场渲染的三维高斯喷洒》中描述的光栅化技术,它允许从少量图像样本学习逼真场景的实时渲染。本文将介绍其工作原理以及对图形学未来的意义。 在此处查看远程高斯查看器空间,或在下方嵌入一个高斯喷洒场景示例。 什么是3D高斯喷洒? 3D高斯喷洒本质上是一种光栅化技术。这意味着: 有描述场景的数据。 将数据绘制在屏幕上。 这类似于计算机图形学中的三角形光栅化,用于在屏幕上绘制许多三角形。 但是,不是三角形,而是高斯函数。下面是一个单个栅格化的高斯函数,为了清晰起见,还绘制了边框。 它由以下参数描述: 位置:它的位置(XYZ) 协方差:它的拉伸/缩放程度(3×3矩阵) 颜色:它的颜色(RGB) 透明度:它的透明度(α) 实际上,可以同时绘制多个高斯函数。 这是三个高斯函数。那么,700万个高斯函数呢? 下面是每个高斯函数完全不透明时的效果: 这只是对3D高斯喷洒的简要概述。接下来,让我们详细介绍论文中描述的完整过程。 工作原理 1. 运动结构 第一步是使用运动结构(Structure from Motion,SfM)方法从一组图像中估计出一个点云。这是一种从一组2D图像中估计出3D点云的方法。可以使用COLMAP库来完成。 2. 转换为高斯函数…

Leave a Comment

使用@remote装饰器在Amazon SageMaker上微调Falcon 7B和其他LLMs

今天,生成式人工智能模型涵盖了各种任务,包括文本摘要、问答以及图像和视频生成为了提高输出的质量,采用了一些方法,如N-Short学习、提示工程、检索增强生成(RAG)和微调微调允许您调整这些生成式人工智能模型,以在您的领域特定的任务上实现更好的性能

Leave a Comment

通过在Amazon SageMaker上使用Hugging Face进行电子邮件分类,加速客户成功管理

在这篇文章中,我们分享了SageMaker如何帮助Scalable的数据科学团队高效地管理数据科学项目的生命周期,特别是电子邮件分类器项目生命周期从使用SageMaker Studio进行初始阶段的数据分析和探索开始,然后通过SageMaker训练、推理和Hugging Face DLCs进行模型实验和部署,并最终通过与其他AWS服务集成的SageMaker Pipelines完成训练流程

Leave a Comment

“文本转语音 – 训练您的大型语言模型”

介绍 想象一个世界,人工智能可以接受音乐家的语音指令,并将其转化为美妙的、旋律优美的吉他声音。这不是科幻小说,而是源自于开源社区“AI之声”的突破性研究。在本文中,我们将探讨在生成式人工智能吉他声音的“文本到声音”领域创建大型语言模型(LLM)的旅程。我们将讨论所面临的挑战以及为实现这个愿景所开发的创新解决方案。 学习目标: 了解在“文本到声音”领域创建大型语言模型的挑战和创新解决方案。 探索在开发基于语音指令生成吉他声音的人工智能模型时面临的主要挑战。 深入了解使用ChatGPT和QLoRA模型等人工智能进展改进生成式人工智能的未来方法。 问题陈述:音乐家的意图识别 问题是使人工智能能够根据音乐家的语音指令生成吉他声音。例如,当音乐家说“给我你明亮的吉他声音”时,生成式人工智能模型应该理解意图并产生明亮的吉他声音。这需要上下文和领域特定的理解,因为像“明亮”这样的词在一般语言中有不同的含义,但在音乐领域代表特定的音色质量。 数据集挑战和解决方案 训练大型语言模型的第一步是拥有与模型的输入和期望输出相匹配的数据集。在确定正确的数据集以训练我们的LLM以理解音乐家的指令并以正确的吉他声音作出回应时,我们遇到了几个问题。以下是我们如何处理这些问题。 挑战1:吉他音乐领域数据集准备 一个重大的挑战是缺乏特定于吉他音乐的可用数据集。为了克服这个问题,团队不得不创建自己的数据集。这个数据集需要包括音乐家之间讨论吉他声音的对话,以提供上下文。他们利用了Reddit的讨论等资源,但发现需要扩大这个数据池。他们采用了数据增强、使用BiLSTM深度学习模型和生成基于上下文的增强数据集等技术。 挑战2:数据注释和创建标记数据集 第二个挑战是对数据进行注释以创建一个带有标签的数据集。像ChatGPT这样的大型语言模型通常在通用数据集上进行训练,需要对特定领域的任务进行微调。例如,“明亮”可以指光线或音乐质量。团队使用了一种名为Doccano的注释工具,教会模型正确的上下文。音乐家为乐器和音色质量给数据打上了标签。由于需要领域专业知识,注释工作具有挑战性,但团队通过应用主动学习方法对数据进行自动标注来部分解决了这个问题。 挑战3:建模作为机器学习任务-命名实体识别(NER)方法 确定正确的建模方法是另一个障碍。它应该被视为识别主题还是实体?团队确定了命名实体识别(NER)方法,因为它使模型能够识别和提取与音乐相关的实体。他们采用了spaCy的自然语言处理流水线,利用了HuggingFace的RoBERTa等转换器模型。这种方法使生成式人工智能能够在音乐领域中识别像“明亮”和“吉他”这样的词的上下文,而不是它们的一般含义。 模型训练的挑战和解决方案 模型训练对于开发有效和准确的人工智能和机器学习模型至关重要。然而,它通常会带来一些挑战。在我们的项目背景下,当我们训练我们的转换器模型时,我们遇到了一些独特的挑战,我们不得不找到创新的解决方案来克服这些挑战。 过拟合和内存问题 在模型训练过程中,我们遇到的主要挑战之一是过拟合。过拟合是指模型过于专注于拟合训练数据,导致在未见或真实世界数据上表现不佳。由于我们的训练数据有限,过拟合是一个真正的问题。为了解决这个问题,我们需要确保我们的模型能够在各种真实世界场景中表现良好。 为了解决这个问题,我们采用了数据增强技术。我们创建了四个不同的测试集:一个用于原始训练数据,另外三个用于在不同上下文中进行测试。在基于内容的测试集中,我们改变了整个句子,而在基于上下文的测试集中保留了音乐领域的实体。使用未见过的数据集进行测试也对验证模型的鲁棒性起到了至关重要的作用。 然而,我们的旅程并不没有遇到与内存相关的障碍。使用流行的自然语言处理库spaCy训练模型会引发内存问题。最初,由于内存限制,我们仅为评估分配了2%的训练数据。将评估集扩大到5%仍然导致内存问题。为了解决这个问题,我们将训练集分成了四部分并分别进行训练,既解决了内存问题又保持了模型的准确性。 模型性能和准确性 我们的目标是确保模型在实际场景中表现良好,并且我们所达到的准确性不仅仅是由于过拟合造成的。由于在广泛的数据上进行了预训练的大型语言模型RoBERTa,训练过程非常快速。spaCy进一步帮助我们找到了适合我们任务的最佳模型。 结果是令人鼓舞的,准确率始终超过95%。我们使用了各种测试集进行了测试,包括基于上下文和基于内容的数据集,结果准确率令人印象深刻。这证实了尽管训练数据有限,模型学习能力快速。…

Leave a Comment

Can't find what you're looking for? Try refining your search: