Press "Enter" to skip to content

2 search results for "此网络研讨会"

AI在欺诈检测中的应用方式是怎样的?

西部野蛮时代有枪手、抢劫银行和悬赏–而今日数字时代有身份盗窃、信用卡欺诈和退款。 利用金融诈骗赚钱已成为一项数十亿美元的犯罪活动。而诈骗者手中的生成式人工智能只会使这种盈利更加丰厚。 根据《尼尔森报告》,全球信用卡损失预计将在2026年达到430亿美元。 金融诈骗以越来越多的方式进行,比如从暗网窃取被黑客攻击的数据实施信用卡盗窃,利用生成式人工智能进行钓鱼式获取个人信息,并在加密货币、数字钱包和法定货币之间洗钱。还有许多其他金融诈骗计划潜伏在数字黑社会。 为了跟上步伐,金融服务公司正在利用人工智能进行诈骗检测。这是因为许多数字犯罪需要及时阻止,以便消费者和金融公司能够立即停止损失。 那么人工智能如何用于诈骗检测呢? 人工智能用于诈骗检测使用多个机器学习模型来检测客户行为和联系的异常,以及符合欺诈特征的账户和行为模式。 生成式人工智能可以用作诈骗辅助 金融服务中很多内容涉及文本和数字。生成式人工智能和大型语言模型(LLMs)能够学习意义和背景,承诺在各行各业带来颠覆性的能力和生产力水平。金融服务公司可以利用生成式人工智能开发更智能、更有能力的聊天机器人,并改进诈骗检测。 而反派角色可以通过狡猾的生成式人工智能提示来绕过人工智能保障,用于欺诈。而且大型语言模型正在提供类似人类写作的能力,使诈骗分子能够撰写更具上下文相关的电子邮件,而无需拼写错误和语法错误。可以快速创建许多不同版本的钓鱼邮件,使生成式人工智能成为实施欺诈的绝佳副驾驶员。还有许多诸如FraudGPT之类的暗网工具,可以利用生成式人工智能进行网络犯罪。 生成式人工智能也可以用于声音认证安全措施的金融损害。一些银行正在使用声音认证来帮助授权用户。如果攻击者能够获取声音样本,他们可以使用深度伪造技术克隆银行客户的声音,试图突破这些系统。声音数据可以通过试图引诱通话接收者通过声音作出回应的垃圾电话来收集。 聊天机器人诈骗问题如此严重,以至于美国联邦贸易委员会提出了有关使用大型语言模型和其他技术模拟人类行为,用于伪造视频和声音克隆的关注和担忧。 生成式人工智能如何解决滥用和诈骗检测问题? 诈骗审查现在有强大的新工具。处理手动诈骗审查的工作人员可以通过在后端运行基于LLM的助手,利用来自政策文件的信息来加速决策,判断案件是否属于欺诈,从而大大加快处理过程。 大型语言模型被采用来预测客户的下一笔交易,这有助于支付公司预先评估风险并阻止欺诈交易。 生成式人工智能还通过提高准确性、生成报告、减少调查和降低合规风险来帮助打击交易诈骗。 生成合成数据是生成式人工智能用于欺诈预防的另一个重要应用。合成数据可以提高用于训练诈骗检测模型的数据记录数量,增加示例的多样性和复杂性,使人工智能能够识别欺诈者使用的最新技术。 NVIDIA提供了帮助企业采用生成式人工智能构建聊天机器人和虚拟代理的工具,使用了检索增强生成技术。检索增强生成使公司能够利用自然语言提示来访问大量数据集进行信息检索。 利用NVIDIA的人工智能工作流程可以帮助加速构建和部署适用于各种用例的企业级能力,使用基础模型、NVIDIA NeMo框架、NVIDIA Triton推理服务器和GPU加速矢量数据库来部署检索增强生成技术的聊天机器人。 行业专注于安全,以确保生成型人工智能不易被滥用造成伤害。NVIDIA发布了NeMo Guardrails,以帮助确保基于LLMs的智能应用(如OpenAI的ChatGPT)的准确性、适当性、主题相关性和安全性。 该开源软件旨在防止滥用人工智能驱动的应用程序进行欺诈和其他不当使用。 人工智能在识别欺诈方面的好处是什么?…

Leave a Comment

LLM革命:改变语言模型

介绍 在过去几年中,语言模型领域经历了一场巨大的演变,特别是随着大规模语言模型(LLMs)的出现。这些模型具备数十亿个参数和对自然语言的深刻理解,对于改变人工智能领域起到了关键作用。今天,我们将探索这场革命,重点介绍从闭源到开源LLMs的转变,精细调整的重要性以及最近出现的高效调整技术的发展。 学习目标: 了解闭源和开源LLMs的区别。 了解LLMs中的传统和参数高效调整。 探索不同的参数高效调整策略。 学习使用Ludwig进行高效调整。 闭源vs开源LLMs:选择正确的方法 语言模型领域存在着闭源模型(如OpenAI的ChatGPT、GPT 3.5和GPT 4)和开源变种(如Meta、Google和各种研究实验室提供的)之间的两极分化。闭源LLMs由于其管理基础设施和快速概念验证能力,成为一个引人注目的起点。这些模型提供高质量的预训练数据集,并且无需设置基础设施,使得那些探索LLMs能力的人可以轻松入门。 然而,尽管闭源LLMs易于获取,但它们存在根本性的局限性。它们缺乏模型所有权和极少的自定义能力,特别是对于数据隐私和模型控制至关重要的领域,这使得闭源LLMs不太适合长期投资。相比之下,开源LLMs提供了一个有希望的替代方案。它们使得完全拥有模型和自定义成为可能,并便利地获得开源空间中的创新发展。而付出的代价则是主机费用和困难。 传统微调和参数高效微调 微调成为了最大化LLMs潜力的关键过程,特别是考虑到特定领域任务的情况下。闭源模型常常缺乏所需的灵活性进行微调,而开源模型则可以完全控制这个过程。微调允许通过更新模型权重将预训练的LLMs适应于特定任务,从而提高性能。这是将这些通用模型个性化为专用应用的手段,为独特任务优化性能。 关于微调和类似检索增强生成(RAG)模型之间的辩论,重点在于是否需要针对具体任务进行定制的模型,而非通用智能模型。开源LLMs的性质允许自定义和高效微调以实现卓越的任务特定性能。 传统微调涉及更新所有模型参数,这一过程已被证明是资源密集型、耗时且不总能获得最佳的任务特定性能。然而,参数高效微调的最新创新取得了突破。通过冻结预训练LLM并仅训练一小部分特定任务层(不到总模型权重的1%),高效微调变得既节约资源又更有效。 向参数高效微调的转变显著影响了LLMs如何适应特定任务。通过仅关注训练少量特定任务层,这个过程变得更具成本效益和高效性。这种创新方法在较小数据集上实现了最佳任务特定性能,展示了开源LLMs相对于闭源模型的潜力。 Meta等人的LIMA论文等研究支持了在较小数据集上进行微调可以超越GPT 4等闭源模型性能的观点。这种通过较少数据实现更多的概念的概念突出了开源LLMs在适当微调下的效率和效果。 理解高效训练策略 在利用预训练模型进行特定任务时,LoRA(低秩自适应)和QLoRA(量化低秩自适应)已经成为有效微调大型语言模型(LLMs)的创新方法。这些方法对于将预训练模型定制为专用任务而最小化附加参数非常重要。 LoRA:对体系结构的深入研究 LoRA的体系结构涉及低秩分解,通过将变压器架构中的大型权重矩阵分解为较小矩阵来实现。在变压器的上下文中,LoRA专注于查询,键和值线性投影。 通常,这些线性投影具有大的权重矩阵,例如1024×1024,LoRA将其分解为较小的矩阵,例如1024×8和8×1024。这些较小的矩阵相乘,可以产生原始的维度。这种压缩大大减少了可调参数的数量,约为总LLM参数的一半到1%。 在变压器体系结构的上下文中,LoRA为键和查询投影层集成了适配器模块。这些通过低秩分解构造的适配器保持了原始形状,同时使其能够插入到变压器层中。基本层保持冻结状态,只有适配器权重是可训练的。…

Leave a Comment

Can't find what you're looking for? Try refining your search: