Press "Enter" to skip to content

16 search results for "Milvus"

通过检索增强生成,提升您的稳定扩散提示

文字到图像生成是一门快速发展的人工智能领域,应用广泛,包括媒体与娱乐、游戏、电子商务产品可视化、广告与营销、建筑设计与可视化、艺术创作和医学影像等各个领域稳定扩散是一种文字到图像模型,让您能够在几秒钟内创建高品质的图片在十一月份[…]

Leave a Comment

2024年必试的前15个矢量数据库

介绍 在数据科学快速发展的领域中,向量数据库在实现高维数据的高效存储、检索和操作方面发挥着关键作用。本文探讨了向量数据库的定义和意义,将其与传统数据库进行了比较,并详细介绍了2024年考虑的前15个向量数据库。 什么是向量数据库? 向量数据库的核心设计是高效处理向量化数据。与擅长结构化数据存储的传统数据库不同,向量数据库专注于管理多维空间中的数据点,使其非常适用于人工智能、机器学习和自然语言处理等应用。 向量数据库的目的在于促进向量嵌入、相似搜索和高维数据的高效处理。与可能难以处理非结构化数据的传统数据库不同,向量数据库在数据点之间的关系和相似性至关重要的场景中表现出色。 向量数据库 vs 传统数据库 方面 传统数据库 向量数据库 数据类型 表格格式的简单数据(文字、数字)。 具有专门搜索功能的复杂数据(向量)。 搜索方法 精确匹配数据。 使用近似最近邻(ANN)搜索进行最接近匹配。 搜索技术 标准查询方法。 使用哈希和基于图的搜索等专门方法进行ANN搜索。 处理非结构化数据 由于缺乏预定义格式而具有挑战性。 将非结构化数据转化为数值表示(嵌入)。 表示 基于表格的表示形式。…

Leave a Comment

VoAGI新闻,10月11日:3个数据科学项目助你拿到那份工作 • 7步掌握自然语言处理

本周:什么是三个数据科学项目,让您确保获得工作?• 一份七步指南,帮助您从机器学习和Python的基础知识走向Transformer、自然语言处理的最新进展,乃至更高层次

Leave a Comment

“文本转语音 – 训练您的大型语言模型”

介绍 想象一个世界,人工智能可以接受音乐家的语音指令,并将其转化为美妙的、旋律优美的吉他声音。这不是科幻小说,而是源自于开源社区“AI之声”的突破性研究。在本文中,我们将探讨在生成式人工智能吉他声音的“文本到声音”领域创建大型语言模型(LLM)的旅程。我们将讨论所面临的挑战以及为实现这个愿景所开发的创新解决方案。 学习目标: 了解在“文本到声音”领域创建大型语言模型的挑战和创新解决方案。 探索在开发基于语音指令生成吉他声音的人工智能模型时面临的主要挑战。 深入了解使用ChatGPT和QLoRA模型等人工智能进展改进生成式人工智能的未来方法。 问题陈述:音乐家的意图识别 问题是使人工智能能够根据音乐家的语音指令生成吉他声音。例如,当音乐家说“给我你明亮的吉他声音”时,生成式人工智能模型应该理解意图并产生明亮的吉他声音。这需要上下文和领域特定的理解,因为像“明亮”这样的词在一般语言中有不同的含义,但在音乐领域代表特定的音色质量。 数据集挑战和解决方案 训练大型语言模型的第一步是拥有与模型的输入和期望输出相匹配的数据集。在确定正确的数据集以训练我们的LLM以理解音乐家的指令并以正确的吉他声音作出回应时,我们遇到了几个问题。以下是我们如何处理这些问题。 挑战1:吉他音乐领域数据集准备 一个重大的挑战是缺乏特定于吉他音乐的可用数据集。为了克服这个问题,团队不得不创建自己的数据集。这个数据集需要包括音乐家之间讨论吉他声音的对话,以提供上下文。他们利用了Reddit的讨论等资源,但发现需要扩大这个数据池。他们采用了数据增强、使用BiLSTM深度学习模型和生成基于上下文的增强数据集等技术。 挑战2:数据注释和创建标记数据集 第二个挑战是对数据进行注释以创建一个带有标签的数据集。像ChatGPT这样的大型语言模型通常在通用数据集上进行训练,需要对特定领域的任务进行微调。例如,“明亮”可以指光线或音乐质量。团队使用了一种名为Doccano的注释工具,教会模型正确的上下文。音乐家为乐器和音色质量给数据打上了标签。由于需要领域专业知识,注释工作具有挑战性,但团队通过应用主动学习方法对数据进行自动标注来部分解决了这个问题。 挑战3:建模作为机器学习任务-命名实体识别(NER)方法 确定正确的建模方法是另一个障碍。它应该被视为识别主题还是实体?团队确定了命名实体识别(NER)方法,因为它使模型能够识别和提取与音乐相关的实体。他们采用了spaCy的自然语言处理流水线,利用了HuggingFace的RoBERTa等转换器模型。这种方法使生成式人工智能能够在音乐领域中识别像“明亮”和“吉他”这样的词的上下文,而不是它们的一般含义。 模型训练的挑战和解决方案 模型训练对于开发有效和准确的人工智能和机器学习模型至关重要。然而,它通常会带来一些挑战。在我们的项目背景下,当我们训练我们的转换器模型时,我们遇到了一些独特的挑战,我们不得不找到创新的解决方案来克服这些挑战。 过拟合和内存问题 在模型训练过程中,我们遇到的主要挑战之一是过拟合。过拟合是指模型过于专注于拟合训练数据,导致在未见或真实世界数据上表现不佳。由于我们的训练数据有限,过拟合是一个真正的问题。为了解决这个问题,我们需要确保我们的模型能够在各种真实世界场景中表现良好。 为了解决这个问题,我们采用了数据增强技术。我们创建了四个不同的测试集:一个用于原始训练数据,另外三个用于在不同上下文中进行测试。在基于内容的测试集中,我们改变了整个句子,而在基于上下文的测试集中保留了音乐领域的实体。使用未见过的数据集进行测试也对验证模型的鲁棒性起到了至关重要的作用。 然而,我们的旅程并不没有遇到与内存相关的障碍。使用流行的自然语言处理库spaCy训练模型会引发内存问题。最初,由于内存限制,我们仅为评估分配了2%的训练数据。将评估集扩大到5%仍然导致内存问题。为了解决这个问题,我们将训练集分成了四部分并分别进行训练,既解决了内存问题又保持了模型的准确性。 模型性能和准确性 我们的目标是确保模型在实际场景中表现良好,并且我们所达到的准确性不仅仅是由于过拟合造成的。由于在广泛的数据上进行了预训练的大型语言模型RoBERTa,训练过程非常快速。spaCy进一步帮助我们找到了适合我们任务的最佳模型。 结果是令人鼓舞的,准确率始终超过95%。我们使用了各种测试集进行了测试,包括基于上下文和基于内容的数据集,结果准确率令人印象深刻。这证实了尽管训练数据有限,模型学习能力快速。…

Leave a Comment

该AI研究提出了使用OpenAI嵌入向量进行强大的Lucene集成搜索

最近,在机器学习的搜索领域中,应用深度神经网络取得了重大进展,特别强调了双编码器架构中的表示学习。在这个框架中,各种类型的内容,包括查询、段落,甚至包括图像等,被转化为紧凑且有意义的“嵌入”,表示为密集向量。基于这种架构构建的密集检索模型成为增强大型语言模型(LLMs)中检索过程的基石。这种方法在当今生成式人工智能的更广泛领域中已经广受欢迎,并被证明在增强LLMs的整体能力方面非常有效。 叙述表明,由于需要处理大量的密集向量,企业应该将专用的“向量存储”或“向量数据库”纳入到他们的“AI堆栈”中。一些初创公司积极推动这些向量存储作为创新和现代企业架构的重要组成部分。其中一些显著的例子包括Pinecone、Weaviate、Chroma、Milvus和Qdrant等。一些支持者甚至已经提出这些向量数据库最终可能取代长期存在的关系数据库。 本文提出了与这种叙述相对立的观点。这些论点围绕着一个简单的成本效益分析,考虑到搜索在许多组织中代表着一个现有且已经建立的应用,从而导致在这些能力上进行了重大的先前投资。生产基础设施主要由以开源Lucene搜索库为中心的广泛生态系统主导,尤其是由Elasticsearch、OpenSearch和Solr等平台推动。 https://arxiv.org/abs/2308.14963 上面的图片展示了一个标准的双编码器架构,其中编码器从查询和文档(段落)生成密集向量表示(嵌入)。检索被构建为向量空间中的k最近邻搜索。实验集中在MS MARCO段落排序测试集上进行,该集合由大约880万个从网络中提取的段落组成。用于评估的是标准开发查询和来自TREC 2019和TREC 2020深度学习跟踪的查询。 研究结果表明,今天可以使用Lucene直接构建一个使用OpenAI嵌入的向量搜索原型。嵌入API的日益普及支持了我们的论点。这些API简化了从内容中生成密集向量的复杂过程,使其更易于从业者使用。确实,当您构建搜索生态系统时,只需要Lucene就足够了。但正如事实所证明的那样,只有时间会告诉我们是否正确。最后,这提醒我们,在快速发展的人工智能世界中,权衡成本与收益仍将是一种主要思维方式。

Leave a Comment

见面GPTCache:开发LLM查询语义缓存的库

ChatGPT和大型语言模型(LLMs)非常灵活,可以创建多种程序。然而,当应用程序受欢迎并且流量增加时,与LLM API调用相关的成本可能变得显著。在处理许多查询时,LLM服务可能还需要较长的等待时间。 为了直面这一困难,研究人员开发了GPTCache,这是一个旨在存储LLM答案的语义缓存项目。开源的GPTCache程序可以通过缓存其输出答案来加快LLMs的速度。当所请求的响应已经在缓存中存储并且之前已经请求过时,这将极大地减少获取它所需的时间。 GPTCache具有灵活和简单的特点,非常适合任何应用。它与许多语言学习机器(LLMs)兼容,例如OpenAI的ChatGPT。 它是如何工作的? 为了正常运行,GPTCache会缓存LLM的最终回复。缓存是用于快速检索最近使用的信息的内存缓冲区。每当向LLM发出新请求时,GPTCache首先查找缓存,以确定所请求的响应是否已经存储在其中。如果答案可以在缓存中找到,它将立即返回。如果缓存中没有找到,LLM将生成响应并将其添加到缓存中。 GPTCache的模块化架构使其易于实施定制的语义缓存解决方案。用户可以通过选择不同的设置来定制每个模块的体验。 LLM适配器通过将各种LLM模型使用的API和请求协议标准化为OpenAI API,统一了它们之间的接口。由于LLM适配器可以在不需要重写代码或熟悉新API的情况下在LLM模型之间移动,它简化了测试和实验。 嵌入生成器使用所请求的模型创建嵌入,以进行相似性搜索。支持的模型可以使用OpenAI的嵌入API。这是使用GPTCache/paraphrase-albert-onnx模型的ONNX,Hugging Face嵌入API,Cohere嵌入API,fastText嵌入API和SentenceTransformers嵌入API。 在缓存存储中,像ChatGPT这样的LLM的响应被保留,直到可以检索。在确定两个实体是否在语义上相似时,会获取缓存的回复并将其发送回请求方。GPTCache与许多不同的数据库管理系统兼容。用户可以选择最符合其性能、可扩展性和最常用数据库成本要求的数据库。 向量存储的选择:GPTCache包括一个向量存储模块,它使用从原始请求中导出的嵌入来识别K个最相似的请求。此功能可用于确定两个请求的相似程度。此外,GPTCache支持多个向量存储,例如Milvus、Zilliz Cloud和FAISS,并为与它们一起使用提供了简单的接口。用户可以选择各种向量存储选项,其中任何一个都可能影响GPTCache的相似性搜索性能。凭借对各种向量存储的支持,GPTCache承诺是可适应的,并满足更多种用例的需求。 GPTCache缓存管理器管理缓存存储和向量存储组件的驱逐策略。当缓存被填满时,替换策略决定哪些旧数据应该从缓存中删除,以为新数据腾出空间。 相似性评估器的信息来自于GPTCache的缓存存储和向量存储部分。它使用几种不同的方法将输入请求与向量存储中的请求进行比较。是否从缓存中提供请求取决于相似度的程度。GPTCache提供了统一的接口和可用实现的库,以确定缓存匹配。GPTCache通过各种相似度算法来确定缓存匹配的能力,使其能够适应大范围的用例和用户需求。 特点和优势 通过GPTCache减少LLM查询延迟,提高响应速度和速度。 由于许多LLM服务采用基于令牌和请求的定价结构,GPTCache可以减少服务成本,限制API调用次数。 GPTCache具有从LLM服务卸载工作的能力,提高可扩展性。随着您接收的请求数量增加,这可以帮助您保持高效运行。 借助GPTCache,可以将创建LLM应用程序的成本降至最低。通过缓存由LLM生成或模拟的数据,您可以在不向LLM服务发出API请求的情况下测试您的应用程序。 GPTCache可以与您选择的应用程序(LLM ChatGPT)、缓存存储(SQLite、PostgreSQL、MySQL、MariaDB、SQL Server或Oracle)和向量存储(FAISS、Milvus、Ziliz Cloud)配合使用。GPTCache项目的目标是在GPT-based应用程序中尽可能地重用先前生成的回复,而不是每次都从空白开始,从而实现对语言模型的最有效利用。

Leave a Comment

关于向量数据库的一切 – 它们的重要性、向量嵌入和大型语言模型(LLMs)的顶级向量数据库

大型语言模型在最近取得了巨大的增长和进展。人工智能领域随着这些模型的每一次新发布而蓬勃发展。从教育、金融到医疗保健和媒体,大型语言模型几乎在每个领域都有贡献。像GPT、BERT、PaLM和LLaMa这样的著名大型语言模型通过模仿人类正在改变人工智能行业。基于GPT架构并由OpenAI开发的著名聊天机器人ChatGPT通过生成准确而富有创意的内容、回答问题、总结大量文本段落和语言翻译来模仿人类。 什么是向量数据库? 在人工智能和机器学习领域中,一种新颖而独特的数据库类型——向量数据库正变得越来越受欢迎。与最初用于以行和列的形式存储表格数据的传统关系型数据库以及像MongoDB这样将数据存储在JSON文档中的较新的NoSQL数据库不同,向量数据库在性质上有所不同。这是因为向量嵌入是向量数据库旨在存储和检索的唯一一种数据类型。 大型语言模型和所有新应用都依赖于向量嵌入和向量数据库。这些数据库是专门为有效存储和操作向量数据而设计的数据库。向量数据使用点、线和多边形来描述空间中的对象,在计算机图形、机器学习和地理信息系统等各个行业中经常使用。 向量数据库基于向量嵌入,它是一种携带语义信息的数据编码方式,有助于AI系统解释数据并保持长期记忆。这些嵌入是作为机器学习过程的一部分生成的训练数据的压缩版本。它们作为过程中新数据的过滤器,用于运行机器学习的推理阶段。 在向量数据库中,数据的几何特性被用于组织和存储数据。每个项目通过在空间中的坐标和其他赋予其特征的属性来标识。例如,向量数据库可以用于在地理信息系统应用程序中记录有关城镇、高速公路、河流和其他地理特征的详细信息。 向量数据库的优势 空间索引 – 向量数据库使用R树和四叉树等空间索引技术,可以基于地理关系(如接近和约束)进行数据检索,这使得向量数据库优于其他数据库。 多维索引 – 除了空间索引,向量数据库还可以支持对其他向量数据特性进行索引,以实现基于非空间属性的高效搜索和过滤。 几何操作 – 向量数据库通常具有内置的支持几何操作(如交集、缓冲和距离计算),这对于空间分析、路由和地图可视化等任务非常重要。 与地理信息系统(GIS)的集成 – 向量数据库经常与GIS软件和工具一起使用,以高效地处理和分析空间数据。 构建大型语言模型的最佳向量数据库 在大型语言模型的情况下,向量数据库越来越受欢迎,其主要应用是存储由LLM训练产生的向量嵌入。 Pinecone – Pinecone是一款强大的向量数据库,以其出色的性能、可扩展性和处理复杂数据的能力脱颖而出。它非常适合需要即时访问向量和实时更新的应用程序,因为它专为快速高效的数据检索而构建。 DataStax…

Leave a Comment

70%的开发者今天拥抱人工智能:深入研究大型语言模型、LangChain和向量数据库在当前技术领域的崛起

人工智能具有无限的可能性,这在其引入每个人的新产品和发展中显而易见。随着OpenAI开发的最新聊天机器人ChatGPT的发布,由于其GPT的变压器架构,AI领域已经席卷全球。从深度学习、自然语言处理(NLP)和自然语言理解(NLU)到计算机视觉,AI正将每个人推向一个拥有无尽创新的未来。几乎每个行业都在利用AI的潜力并进行革命性的改变。特别是在大规模语言模型(LLMs),LangChain和向量数据库等领域的卓越技术进步,是这一显著发展的原因。 大规模语言模型 大规模语言模型(LLMs)的发展代表了人工智能的一大步进。这些基于深度学习的模型在处理和理解自然语言时表现出令人印象深刻的准确性和流畅性。LLMs通过从各种来源(包括书籍、期刊、网页和其他文本资源)获取大量文本数据进行训练。它们通过学习语言来获取语言结构、模式和语义链接,从而帮助它们理解人类交流的复杂性。 LLMs的基本架构通常涉及具有多层的深度神经网络。根据训练数据中发现的模式和连接,该网络分析输入文本并生成预测。为了减少模型预期输出和预期输出之间的差异,模型的参数在训练阶段进行调整。LLM在训练过程中消耗文本数据,并试图根据上下文预测下一个单词或一系列单词。 LLMs的应用 回答问题:LLMs擅长回答问题,并通过搜索大量的文本语料库(如书籍、论文或网站)来提供精确而简洁的回答。 内容生成:LLMs在涉及内容生成的活动中证明了其有用性。它们能够生成语法正确、连贯的文章、博客条目和其他书面内容。 文本摘要:LLMs在文本摘要方面表现出色,能够在将冗长的文本压缩为更短、更易消化的摘要时保留重要信息。 聊天机器人:LLMs经常被用于创建聊天机器人和使用对话式AI的系统。它们使得这些系统能够用正常语言与用户进行交互,理解他们的问题并适当地回答,并在整个交互过程中保持上下文。 语言翻译:LLMs能够准确地在不同语言之间进行文本翻译,克服语言障碍,促进成功的交流。 训练LLMs的步骤 训练LLMs的初始阶段是编制一个庞大的文本数据集,模型将使用该数据集来发现语言模式和结构。 一旦收集到数据集,就需要进行预处理,以便为训练做准备。为此,必须通过删除任何不必要或冗余的条目来清理数据。 选择适当的模型架构对于训练LLMs至关重要。基于变压器的架构已经显示出在处理和生成自然语言方面非常高效,包括GPT模型。 使用反向传播等深度学习方法调整模型的参数来训练LLMs,并提高其准确性。模型在训练过程中处理输入数据并基于识别出的模式生成预测。 在初始训练之后,LLMs将进一步在特定任务或领域上进行微调,以提高其在这些领域的性能。 为了评估经过训练的LLMs的性能,使用多种指标(包括困惑度和准确性)来评估模型的性能。 经过训练和评估后,LLMs将在实际应用中的生产环境中使用于实际应用。 一些著名的语言模型 GPT(Generative Pre-trained Transformer)是OpenAI的GPT模型系列的重要成员,也是知名的ChatGPT的底层模型。它是一个仅解码器的单向自回归模型,通过根据先前生成的单词预测下一个单词来生成文本。GPT拥有1750亿个参数,广泛用于内容生成、问题回答等方面。 BERT – 双向Transformer编码器表示(BERT)是最早的基于Transformer的自监督语言模型之一。它是一个强大的模型,用于理解和处理自然语言,具有3.4亿个参数。…

Leave a Comment

使用Langchain为YouTube视频构建ChatGPT

介绍 你是否曾经想过与视频聊天有多么好?作为一个博客作者,我经常觉得看一个长达一小时的视频来获取相关信息很无聊。有时候,看一个视频以获取任何有用的信息感觉像是一份工作。所以,我构建了一个聊天机器人,让你可以与 YouTube 视频或任何视频进行聊天。这得益于 GPT-3.5-turbo、Langchain、ChromaDB、Whisper 和 Gradio。因此,在本文中,我将介绍如何使用 Langchain 构建一个功能强大的聊天机器人,用于与 YouTube 视频交互。 学习目标 使用 Gradio 构建 Web 界面 使用 Whisper 处理 YouTube 视频并提取文本数据 适当处理和格式化文本 创建文本数据的嵌入 配置…

Leave a Comment

Can't find what you're looking for? Try refining your search: