Press "Enter" to skip to content

13 search results for "Ding et al. 2021"

使用密集预测变换进行图像语义分割

介绍 本文将介绍一种计算机视觉技术——图像语义分割。虽然听起来很复杂,但我们会一步一步解析它,并介绍一种使用密集预测变换器(DPTs)实现的图像语义分割概念,这是从Hugging Face的集合中选择的。使用DPTs引入了一个具有非同寻常能力的新阶段。 学习目标 DPTs相对于传统对远程连接的理解的比较。 使用Python实现使用DPT进行深度预测的语义分割。 探索DPT设计,理解它们独特的特点。 本文是数据科学博文马拉松的一部分。 什么是图像语义分割? 想象一下,你有一张图像,并希望根据图像中每个像素的表示对其进行标注。这就是图像语义分割的概念。它可以用于计算机视觉,区分汽车和树木,或者分离图像的不同部分;这一切都是为了智能地标记像素。然而,真正的挑战在于理解对象之间的上下文和关系。让我们将其与处理图像的旧方法进行比较。 卷积神经网络(CNNs) 第一个突破是使用卷积神经网络来处理涉及图像的任务。然而,CNNs有一些限制,尤其是在捕捉图像中的长距离连接方面。想象一下,如果你试图理解图像中不同元素在长距离上是如何相互作用的,传统的CNNs会遇到困难。这就是我们赞美DPT的地方。这些模型基于强大的变换器架构,具备捕捉关联的能力。我们将在接下来看到DPTs。 什么是密集预测变换器(DPTs)? 要理解这个概念,想象一下将我们之前在NLP任务中使用的变换器的强大能力与图像分析相结合。这就是密集预测变换器背后的概念。它们就像图像世界中的超级侦探一样。它们不仅能够标记图像中的每个像素,还可以预测每个像素的深度——这在某种程度上提供了有关每个对象与图像之间的距离的信息。我们将在下面看到这一点。 DPT架构工具箱 DPTs有不同类型,每种类型都有其“编码器”和“解码器”层。让我们在这里看一下两种流行的类型: DPT-Swin-Transformer:将其想象为具有10个编码器层和5个解码器层的超级变换器。它擅长理解图像中不同级别的元素之间的关系。 DPT-ResNet:这个类型就像是一个聪明的侦探,具有18个编码器层和5个解码器层。它善于发现远距离对象之间的联系,同时保持图像的空间结构完整性。 关键特点 以下是关于DPTs如何使用一些关键特点的更详细说明: 分层特征提取:就像传统的卷积神经网络(CNNs)一样,DPTs从输入图像中提取特征。然而,它们采用一种分层的方法,将图像分为不同层次的细节。正是这种层次结构有助于捕捉局部和全局上下文,使模型能够理解不同尺度上对象之间的关系。 自注意机制:这是DPTs的核心,受原始变换器架构启发,使模型能够捕捉图像内的长程依赖关系,并学习像素之间的复杂关系。每个像素都考虑来自所有其他像素的信息,使模型对图像有整体的理解。 使用DPTs进行图像语义分割的Python演示 我们将在下面看到DPTs的实现。首先,让我们通过安装Colab上未预安装的库来设置环境。您可以在这里或https://github.com/inuwamobarak/semantic-segmentation找到此代码。 首先,我们安装并设置环境。…

Leave a Comment

使用Transformer检测图像中的表格行和列

介绍 您是否曾经处理过非结构化数据,并考虑过一种方式来检测文档中表格的存在?以帮助您快速处理您的文档?在本文中,我们将不仅了解如何检测表格的存在,还将通过使用Transformer模型来识别这些表格的结构。这将由两个不同的模型实现。一个用于文档中的表格检测,另一个用于结构识别,可以识别表格中的行和列。 学习目标 如何在图像中检测表格的行和列? Table Transformers和Detection Transformer(DETR)的介绍 PubTables-1M数据集概述 如何使用Table Transformer进行推理 文档、文章和PDF文件是有价值的信息来源,通常包含传递关键数据的表格。从这些表格中高效提取信息可能会面临不同格式和表示之间的挑战。手动复制或重新创建这些表格可能耗时且繁琐。在PubTables-1M数据集上训练的Table Transformers解决了表格检测、结构识别和功能分析的问题。 本文是Data Science Blogathon的一部分。 如何实现的? 这是通过一种名为Table Transformer的Transformer模型实现的。它使用了一个名为PubTables-1M的大型注释数据集,可以检测文章中的文档或图像。该数据集包含约一百万个参数,并采用了一些措施来给模型带来最新的感觉。通过解决不完美注释、空间对齐问题和表格结构一致性等挑战,实现了高效性。与该模型一起发布的研究论文利用了Detection Transformer(DETR)模型,用于联合建模表格结构识别(TSR)和功能分析(FA)。因此,DETR模型是Table Transformer运行的骨干,由微软研究开发。让我们更详细地了解一下DETR。 DEtection TRansformer(DETR) 如前所述,DETR是DEtection TRansformer的缩写,包括使用编码器-解码器Transformer的卷积骨干,例如ResNet架构。这使得它有潜力进行目标检测任务。DETR提供了一种不需要复杂模型(如Faster R-CNN和Mask…

Leave a Comment

Swin Transformers | 现代计算机视觉任务

介绍 Swin Transformer 是视觉 Transformer 领域的一项重大创新。Transformer 在各种任务中展示了出色的性能。在这些 Transformer 中,Swin Transformer 作为计算机视觉的骨干,提供了无与伦比的灵活性和可扩展性,以满足现代深度学习模型的需求。现在是时候发掘这个 Transformer 的全部潜力,见证其令人印象深刻的能力。 学习目标 本文旨在介绍 Swin Transformer,这是一类强大的分层视觉 Transformer。通过阅读本文,您应该了解以下内容: Swin Transformer 的关键特性 它们在计算机视觉模型中作为骨干的应用 Swin Transformer 在图像分类、物体检测和实例分割等各种计算机视觉任务中的优势。…

Leave a Comment

使用n-gram在🤗 Transformers中提升Wav2Vec2性能

Wav2Vec2是一种流行的预训练模型,用于语音识别。该模型由Meta AI Research于2020年9月发布,其创新的架构推动了自监督预训练在语音识别方面的进展,例如Ng等人,2021年,Chen等人,2021年,Hsu等人,2021年和Babu等人,2021年。在Hugging Face Hub上,Wav2Vec2最受欢迎的预训练检查点当前每月下载量超过250,000次。 使用连续时间分类(CTC),预训练的类似Wav2Vec2的检查点非常容易在下游语音识别任务上进行微调。简而言之,微调预训练的Wav2Vec2检查点的工作原理如下: 在预训练的检查点之上堆叠一个随机初始化的线性层,并训练它将原始音频输入分类为一系列字母。它通过以下方式实现: 从原始音频中提取音频表示(使用CNN层), 使用一堆transformer层处理音频表示的序列,和 将处理后的音频表示分类为一系列输出字母。 以前的音频分类模型需要额外的语言模型(LM)和字典,以将分类的音频帧序列转换为连贯的转录。Wav2Vec2的架构基于transformer层,因此每个处理后的音频表示都能从其他所有音频表示中获取上下文。此外,Wav2Vec2利用CTC算法进行微调,解决了“输入音频长度”与“输出文本长度”比例不同的对齐问题。 由于具有上下文化的音频分类和没有对齐问题,Wav2Vec2不需要外部语言模型或字典就能产生可接受的音频转录。 正如官方论文的附录C所示,Wav2Vec2在LibriSpeech上表现出色,而无需使用语言模型。然而,从附录中也可以清楚地看出,结合语言模型使用Wav2Vec2可以显著提高性能,特别是当模型仅在10分钟的转录音频上进行训练时。 直到最近,🤗 Transformers库没有提供一个简单的用户界面来使用经过微调的Wav2Vec2和语言模型解码音频文件。这个情况幸运地发生了改变。🤗 Transformers现在提供了与Kensho Technologies的pyctcdecode库的简单集成。本博客文章是一篇逐步的技术指南,解释了如何使用🤗 Datasets和🤗 Transformers创建一个n-gram语言模型,并将其与现有的经过微调的Wav2Vec2检查点结合使用。 我们首先进行以下步骤: 使用语言模型解码音频与不使用语言模型解码音频有何不同? 如何获取适合语言模型的数据? 如何使用KenLM构建n-gram模型? 如何将n-gram模型与经过微调的Wav2Vec2检查点结合使用? 如果想深入了解Wav2Vec2的工作原理(不是本博客文章所必需的),建议阅读以下资料:…

Leave a Comment

使用预训练的ViT模型在图像字幕中使用Vision Transformers(ViT)

介绍 使用预训练的ViT模型进行图像描述可以看作是一种文本或书面描述,位于图像下方,旨在提供对图像细节的描述。它是将图像转换为文本描述的任务。通过连接视觉(图像)和语言(文本)来完成。在本文中,我们使用PyTorch后端,使用视觉变换器(ViT)作为主要技术,在图像中实现了这一目标。目标是展示一种使用转换器,特别是ViTs,利用经过训练的模型生成图像标题的方法,而无需从头开始重新训练。 来源:Springer 随着社交媒体平台和在线图片使用的当前趋势,掌握这种技能的好处很多,可以出于多种原因进行描述、引用、帮助视力受损者,甚至是搜索引擎优化。这使得学习这种技术对涉及图像的项目非常有用。 学习目标 图像描述的概念 使用ViTs进行图像捕捉 使用预训练模型进行图像描述 使用Python利用转换器 您可以在此GitHub仓库中找到使用的全部代码。 本文是数据科学博客马拉松的一部分。 什么是Transformer模型? 在我们研究ViT之前,让我们先了解一下Transformer。自从Google Brain于2017年引入transformers以来,它引起了人们对其在NLP方面的能力的兴趣。Transformer是一种深度学习模型,其特点是采用自我关注,不同地加权输入数据的每个部分的重要性。并且主要用于自然语言处理(NLP)领域。 Transformer处理序列输入数据,例如自然语言,但transformer一次处理整个输入。借助注意机制,任何输入序列的位置都有上下文。这种效率允许更多的并行化,减少训练时间,同时提高效率。 Transformer体系结构 现在让我们看一下transformers的体系结构组成。Transformer体系结构主要由编码器-解码器结构组成。Transformer体系结构的编码器-解码器结构在一篇著名的论文中被提出,标题为“Attention Is All You Need”。 编码器由层组成,负责逐层处理输入,而解码器层接收编码器输出并生成解码输出。简单地说,编码器将输入序列映射到序列,然后将其馈送到解码器。解码器然后生成一个输出序列。 什么是Vision Transformers? 由于本文展示了ViTs在图像描述中的实际用途,因此也有必要了解ViTs的工作原理。Vision…

Leave a Comment

Can't find what you're looking for? Try refining your search: