Press "Enter" to skip to content

66 search results for ".env"

“用GPT-4打造个性化的人工智能交易顾问”

介绍 近年来,将人工智能(AI)整合到股票交易中已经改变了投资者的决策方式。随着大型语言模型(LLMs)如GPT-3和GPT-4的出现,发生了一场范式转变,使个人投资者和交易者更容易获得复杂的市场分析和见解。这种革命性的技术利用大量的数据和复杂的算法,提供了以前仅由机构投资者独占的市场理解深度。本文重点介绍使用LLMs开发个性化AI交易顾问,旨在根据风险偏好、投资时间、预算和期望回报来匹配个人投资者的投资配置,为零售投资者提供个性化、战略性的投资建议。 由GPT-3和GPT-4等大型语言模型(LLMs)驱动的股票交易顾问已经彻底改变了金融咨询服务。它们可以利用人工智能来分析历史股票数据和当前的财经新闻,为投资者提供与其独特投资组合和财务目标相符合的个性化投资建议。我们将尝试构建一个顾问来预测市场行为和趋势,根据个人风险承受能力、投资期限、可用资本和期望回报提供量身定制的建议。 学习目标 通过本文,读者将能够: 了解AI和像GPT-3这样的LLMs如何改变股市分析和交易。 认识到基于个人风险偏好和投资目标的AI驱动工具提供个性化投资建议的能力。 了解AI如何利用历史和实时数据制定投资策略和预测。 了解股票交易中的AI如何使复杂的投资策略对更广泛的受众(包括零售投资者)可行。 发现如何利用AI驱动的工具进行个人投资和股票交易决策。 了解利用LLMs构建股票交易顾问的概念。 本文作为数据科学博文马拉松的一部分进行发布。 关于数据集 该项目的数据集从纽约证券交易所获取,并在Kaggle上提供,包括覆盖七年的四个CSV文件。其中包括关键的财务指标“fundamentals.csv”,提供历史股价和股票分割调整的“prices.csv”和“prices-split-adjusted.csv”,以及提供附加公司信息(如部门分类和总部)的“securities.csv”。这些文件的综合提供了对公司业绩和股票市场动态的全面了解。 数据准备 使用类似GPT-4这样的大型语言模型(LLMs)来实现股票交易顾问,需要进行关键的数据准备。这个过程包括重要的任务:数据清洗、归一化和分类,使用提供的数据集:fundamentals.csv、prices.csv、prices-split-adjusted.csv和securities.csv。 步骤1:数据清洗 在“基本数据集”中,我们使用中值插补来处理“For Year”、“Earnings Per Share”和“Estimated Shares Outstanding”的缺失值(173个、219个和219个缺失值)。 我们将“Period Ending”列转换为日期时间格式,使其适合进行数字字段分析。…

Leave a Comment

通过使用来自Amazon SageMaker JumpStart的Pinecone向量数据库和Llama-2进行检索增强生成技术来缓解幻觉

尽管在各个行业中,似乎无法阻挡的对LLM的采用,但它们只是整个技术生态系统中的一个组成部分,为新的AI浪潮提供动力许多对话型AI应用需要LLM,如Llama 2、Flan T5和Bloom,以回答用户的查询这些模型依赖参数化知识来回答问题模型[…]

Leave a Comment

使用Amazon SageMaker Clarify和MLOps服務,以大規模操作化LLM評估

在过去的几年中,大型语言模型(LLMs)因其杰出的能力而崭露头角,能够以前所未有的熟练度理解、生成和操纵文本它们的潜在应用领域从对话代理人到内容生成和信息检索,承诺着彻底改变所有行业然而,在确保负责任和…

Leave a Comment

用无代码Amazon SageMaker Canvas在Salesforce Data Cloud上民主化机器学习

本文由Salesforce Einstein AI产品总监Daryl Martis共同撰写这是一系列讨论Salesforce Data Cloud与Amazon SageMaker集成的第三篇文章在第一部分和第二部分中,我们展示了Salesforce Data Cloud和Einstein Studio与SageMaker的集成如何使企业能够访问他们的数据

Leave a Comment

使用AutoGen轻松进行战略AI团队建设

介绍 在一个数字前沿无边界的世界中,AutoGen以一种变革性范式的建筑师的身份出现。想象一下拥有个性化的人工智能团队,每个团队都擅长不同领域,无缝协作,无障碍沟通,不知疲倦地处理复杂任务。这就是AutoGen的本质,它是一种开创性的多智能体对话框架,赋予您创建个性化的人工智能团队的能力。在这篇文章中,我们揭开AutoGen的神奇之处,探索它如何使您能够组建自己的数字梦想团队并实现非凡成就。欢迎来到一个人与机器之间的边界消失,协作无限的未来。 学习目标 在我们深入了解细节之前,让我们概述一下本文的主要学习目标: 全面了解AutoGen作为多智能体对话框架的能力。 了解智能体在多智能体对话框架中的自主沟通和协作。 了解config_list在AutoGen运行中的关键作用。了解保护API密钥和管理配置以实现智能体高效性能的最佳实践。 探索各种对话风格,从完全自主到人类参与的交互。了解AutoGen支持的静态和动态对话模式。 了解如何利用AutoGen根据验证数据、评估函数和优化指标调整LLM。 探索示例,如构建协作内容创作团队和带有文化背景的语言翻译,以了解AutoGen如何在不同场景中应用。 本文作为数据科学博文马拉松的一部分发表。 AutoGen是什么? AutoGen是一个统一的多智能体对话框架,作为使用基础模型的高级抽象。它将能力强大、可定制、可对话的智能体通过自动化聊天集合在一起,与LLMs、工具和人类参与者整合。本质上,它使智能体能够自主沟通和协作,有效地简化复杂任务并自动化工作流程。 为什么AutoGen很重要? AutoGen解决了与人工智能进行高效灵活的多智能体通信的需求。它的重要性在于它能够: 简化复杂LLM工作流程的编排、自动化和优化。 充分发挥LLM模型的性能,同时克服其局限性。 以最少的工作量基于多智能体对话开发下一代LLM应用。 设置开发环境 创建虚拟环境 创建虚拟环境是一种良好的实践,可以隔离特定项目的依赖项,避免与系统范围的软件包冲突。以下是设置Python环境的方法: 选项1:Venv python -m venv…

Leave a Comment

使用Amazon SageMaker Studio与Llama 2、LangChain和Pinecone来构建一个RAG问答解决方案,以便进行快速实验

检索增强生成(RAG)允许您为大型语言模型(LLM)提供对外部知识源(如资料库、数据库和API)的访问权限,而无需对模型进行精细调节在使用生成型人工智能进行问答时,RAG使得LLM能够以最相关、最新的信息来回答问题,并可选择引用[…].

Leave a Comment

使用预选算法在Amazon SageMaker自动模型调整中实现定制的AutoML作业

AutoML可以让您在机器学习(ML)项目的生命周期初期就能从数据中快速得出一般性见解提前了解哪些预处理技术和算法类型能够提供最佳结果,能够减少开发、训练和部署正确模型所需的时间它在每个模型的开发过程中起着至关重要的作用[…]

Leave a Comment

LLM革命:改变语言模型

介绍 在过去几年中,语言模型领域经历了一场巨大的演变,特别是随着大规模语言模型(LLMs)的出现。这些模型具备数十亿个参数和对自然语言的深刻理解,对于改变人工智能领域起到了关键作用。今天,我们将探索这场革命,重点介绍从闭源到开源LLMs的转变,精细调整的重要性以及最近出现的高效调整技术的发展。 学习目标: 了解闭源和开源LLMs的区别。 了解LLMs中的传统和参数高效调整。 探索不同的参数高效调整策略。 学习使用Ludwig进行高效调整。 闭源vs开源LLMs:选择正确的方法 语言模型领域存在着闭源模型(如OpenAI的ChatGPT、GPT 3.5和GPT 4)和开源变种(如Meta、Google和各种研究实验室提供的)之间的两极分化。闭源LLMs由于其管理基础设施和快速概念验证能力,成为一个引人注目的起点。这些模型提供高质量的预训练数据集,并且无需设置基础设施,使得那些探索LLMs能力的人可以轻松入门。 然而,尽管闭源LLMs易于获取,但它们存在根本性的局限性。它们缺乏模型所有权和极少的自定义能力,特别是对于数据隐私和模型控制至关重要的领域,这使得闭源LLMs不太适合长期投资。相比之下,开源LLMs提供了一个有希望的替代方案。它们使得完全拥有模型和自定义成为可能,并便利地获得开源空间中的创新发展。而付出的代价则是主机费用和困难。 传统微调和参数高效微调 微调成为了最大化LLMs潜力的关键过程,特别是考虑到特定领域任务的情况下。闭源模型常常缺乏所需的灵活性进行微调,而开源模型则可以完全控制这个过程。微调允许通过更新模型权重将预训练的LLMs适应于特定任务,从而提高性能。这是将这些通用模型个性化为专用应用的手段,为独特任务优化性能。 关于微调和类似检索增强生成(RAG)模型之间的辩论,重点在于是否需要针对具体任务进行定制的模型,而非通用智能模型。开源LLMs的性质允许自定义和高效微调以实现卓越的任务特定性能。 传统微调涉及更新所有模型参数,这一过程已被证明是资源密集型、耗时且不总能获得最佳的任务特定性能。然而,参数高效微调的最新创新取得了突破。通过冻结预训练LLM并仅训练一小部分特定任务层(不到总模型权重的1%),高效微调变得既节约资源又更有效。 向参数高效微调的转变显著影响了LLMs如何适应特定任务。通过仅关注训练少量特定任务层,这个过程变得更具成本效益和高效性。这种创新方法在较小数据集上实现了最佳任务特定性能,展示了开源LLMs相对于闭源模型的潜力。 Meta等人的LIMA论文等研究支持了在较小数据集上进行微调可以超越GPT 4等闭源模型性能的观点。这种通过较少数据实现更多的概念的概念突出了开源LLMs在适当微调下的效率和效果。 理解高效训练策略 在利用预训练模型进行特定任务时,LoRA(低秩自适应)和QLoRA(量化低秩自适应)已经成为有效微调大型语言模型(LLMs)的创新方法。这些方法对于将预训练模型定制为专用任务而最小化附加参数非常重要。 LoRA:对体系结构的深入研究 LoRA的体系结构涉及低秩分解,通过将变压器架构中的大型权重矩阵分解为较小矩阵来实现。在变压器的上下文中,LoRA专注于查询,键和值线性投影。 通常,这些线性投影具有大的权重矩阵,例如1024×1024,LoRA将其分解为较小的矩阵,例如1024×8和8×1024。这些较小的矩阵相乘,可以产生原始的维度。这种压缩大大减少了可调参数的数量,约为总LLM参数的一半到1%。 在变压器体系结构的上下文中,LoRA为键和查询投影层集成了适配器模块。这些通过低秩分解构造的适配器保持了原始形状,同时使其能够插入到变压器层中。基本层保持冻结状态,只有适配器权重是可训练的。…

Leave a Comment

使用MONAI Deploy在AWS上构建医学影像AI推理流程

在这篇文章中,我们向您展示如何创建一个可在使用MONAI Deploy App SDK构建的应用程序中重复使用的MAP连接器,以与AWS HealthImaging集成并加速从云原生DICOM存储中检索图像数据,用于医学影像人工智能工作负载MONAI Deploy SDK可用于支持医院运营我们还演示了两种托管选项,以便在SageMaker上大规模部署MAP AI应用程序

Leave a Comment

在Python中进行结构化LLM输出存储和解析

介绍 生成AI目前在全球范围内广泛使用。大型语言模型能够理解提供的文本并基于此生成文本的能力,已经导致了从聊天机器人到文本分析器的众多应用。但是,这些大型语言模型通常以非结构化的方式生成文本。有时候,我们希望LLM生成的输出以结构化的形式呈现,比如JSON(JavaScript对象表示)格式。假设我们正在使用LLM来分析社交媒体帖子,并且我们需要LLM生成的输出在代码中本身作为JSON/Python变量,以执行其他任务。通过Prompt Engineering可以实现这一点,但需要花费大量时间来调整提示。为了解决这个问题,LangChain引入了输出解析功能,可以用于将LLM的输出转换为结构化格式。 学习目标 解释大型语言模型生成的输出 使用Pydantic创建自定义数据结构 了解提示模板的重要性,并生成一个格式化LLM输出的模板 学习如何使用LangChain创建LLM输出的格式化指令 了解如何将JSON数据解析为Pydantic对象 本文是数据科学博文马拉松的一部分。 LangChain和输出解析是什么? LangChain是一个Python库,可以让您在短时间内构建与大型语言模型相结合的应用程序。它支持多种模型,包括OpenAI GPT LLM、Google的PaLM,甚至是Hugging Face中提供的开源模型,如Falcon、Llama等等。借助LangChain,定制大型语言模型的提示变得轻而易举,它还配备了一个开箱即用的向量存储库,可以存储输入和输出的嵌入。因此,可以使用它来创建在几分钟内查询任何文档的应用程序。 LangChain使大型语言模型能够通过代理从互联网上获取信息。它还提供了输出解析器,允许我们从大型语言模型生成的输出中结构化数据。LangChain提供了不同的输出解析器,如列表解析器、日期时间解析器、枚举解析器等等。在本文中,我们将介绍JSON解析器,它可以将LLM生成的输出解析为JSON格式。下面,我们可以观察到一个典型的流程,即将LLM输出解析为Pydantic对象,从而创建出一组可供Python变量直接使用的数据。 入门-设置模型 在本节中,我们将使用LangChain来设置模型。在本文中,我们将始终使用PaLM作为我们的大型语言模型。我们将使用Google Colab作为我们的环境。您可以将PaLM替换为任何其他大型语言模型。我们将首先导入所需的模块。 !pip install google-generativeai langchain 这将下载LangChain库和与PaLM模型一起使用的google-generativeai库。 需要langchain库来创建自定义提示并解析大型语言模型生成的输出。…

Leave a Comment

使用推理API部署AI漫画工厂

我们最近宣布了我们的新产品PROs的推论,使更大的模型对更广泛的用户群体可用。这个机会为使用Hugging Face作为平台运行最终用户应用程序开启了新的可能性。 这样一个应用程序的示例是AI漫画工厂 – 一个极其受欢迎的空间。成千上万的用户尝试使用它创建自己的AI漫画画布,从而形成了自己的常用用户社区。他们分享自己的作品,甚至有些人还打开了拉取请求。 在本教程中,我们将向您展示如何fork和配置AI漫画工厂以避免长时间等待,并使用推理API部署到您自己的私有空间。这不需要强大的技术技能,但建议了解API、环境变量以及LLMs和Stable Diffusion的基本理解。 入门 首先,确保您注册了PRO Hugging Face账户,因为这将使您能够访问Llama-2和SDXL模型。 AI漫画工厂的工作原理 AI漫画工厂与在Hugging Face上运行的其他空间有所不同:它是一个使用Docker部署的NextJS应用程序,基于客户端-服务器方法,需要两个API才能工作: 语言模型API(目前为Llama-2) 稳定扩散API(目前为SDXL 1.0) 复制空间 要复制AI漫画工厂,请转到该空间并单击“复制”: 您会发现空间所有者、名称和可见性已经为您填好,所以您可以保留这些值。 您的空间副本将在一个不需要太多资源的Docker容器中运行,因此您可以使用最小的实例。官方的AI漫画工厂空间使用较大的CPU实例,因为它满足了一个庞大的用户群体。 要在您的帐户下操作AI漫画工厂,您需要配置您的Hugging Face令牌: 选择LLM和SD引擎 AI漫画工厂支持各种后端引擎,可以使用两个环境变量进行配置:…

Leave a Comment

创新促进包容性:使用Amazon SageMaker进行Hack.The.Bias

这篇文章是与丹尼埃莱·基亚帕鲁皮(Daniele Chiappalupi)合著的,他是苏黎世联邦理工学院AWS学生黑客马拉松团队的成员每个人都可以通过使用Amazon SageMaker JumpStart轻松入门机器学习(ML)在本文中,我们将向您展示一个大学黑客马拉松团队如何使用SageMaker JumpStart快速构建一个帮助用户识别和删除的应用程序[…]

Leave a Comment

Can't find what you're looking for? Try refining your search: