Press "Enter" to skip to content

人类活动识别中的深度学习:这项AI研究利用树莓派和LSTM引入了自适应方法,以提高地点无关的准确性

Translate this HTML (keep the HTML code in the result) to Chinese:

人体行为识别(HAR)是一项研究领域,专注于开发基于来自各种传感器收集的数据自动识别和分类人类活动的方法和技术。HAR旨在使智能手机、可穿戴设备或智能环境等机器能够实时理解和解读人类活动。

传统上,使用可穿戴传感器和基于摄像头的方法。可穿戴传感器对用户来说不舒适且不方便。基于摄像头的方法需要侵入性安装,引发隐私问题。现有的HAR技术面临位置依赖性、对噪声敏感性以及在各种应用中识别多样化活动时需要更多灵活性等挑战,从智能家居到医疗保健和物联网(IoT)等应用。UTeM采用的方法提供了精确、适应性强且与位置无关的解决方案。

马来西亚梅尔卡大学(UTeM)的研究人员制定了一种人体活动识别(HAR)方法,以应对传统限制。他们引入了一种利用信道状态信息(CSI)和先进深度学习技术的系统。

该系统结合了信道状态信息(CSI)和长短时记忆(LSTM)网络。该系统提取无线通信信道状态的重要指标,实现实时分类和绝对位置无关的感知。LSTM网络通过对活动特征进行顺序学习,简化识别过程并适应不同人和环境中的活动变化。

研究人员强调,首先使用树莓派4和专用固件进行数据收集和预处理,以获取原始信道状态信息(CSI)数据,然后使用MATLAB进行优化,以提高质量和应用。

长短时记忆(LSTM)网络被用于从CSI数据中提取关键特征,从而实现对复杂人类活动的准确识别。他们对LSTM模型和分类流程进行了严格的训练,其中包括用于模式识别的在线阶段和用于增强性能的离线阶段。

该系统引入了使用LSTM算法的信号分割方法,以准确确定人类活动的起点和终点。

研究人员测试了该系统,并发现它在人类活动识别方面达到了令人印象深刻的97%的准确率。它展示了在适应新环境方面的能力,标志着HAR技术的重大进步。

研究人员强调了他们系统的卓越适应性。它可以轻松融入不同的环境,而无需进行大量的重新训练或主要更改。这种灵活性使其成为各个领域的实用解决方案,有效应对各种实际需求。这种方法代表了HAR技术的重大进步,具有在智能家居、医疗保健和物联网等多个行业产生重大影响的潜力。

Leave a Reply

Your email address will not be published. Required fields are marked *