在数据分析和机器学习领域,Pandas库是一个强大的工具它拥有超过200个函数和方法,使您能够处理和转换数据,但是…
Leave a CommentTag: Pandas
最近我在广泛地处理时间序列数据,并且在Python中处理了日期和时间对象为此,我学到了一些处理日期时间对象的有用技巧…
Leave a Comment第一篇文章解释了Copy-on-Write机制的工作原理它强调了一些引入副本的工作流程中的领域本文将重点介绍确保此机制优化的方法…
Leave a Comment编辑注:Doris Lee是ODSC West今年10月30日至11月2日的演讲者一定要去听听她的演讲,“通过改变一行代码来扩展您的数据科学工作流程”!pandas是当今最流行的数据科学库之一根据…
Leave a Comment头部和尾部函数是数据分析和编程中的重要工具,特别是在Python流行的pandas包的背景下。本文深入探讨了头部和尾部函数,以Python、R和其他相关编程语言的示例代码为例,展示了它们在不同数据分析场景中的重要性。 什么是head()函数? head()函数主要用于查看数据集的前几行。它帮助用户快速了解数据及其结构。分析人员可以通过显示初始记录来检查列名、数据类型和数据本身。head()函数在许多编程语言中都可用,包括Python和R。 什么是tail()函数? tail()函数提供了数据集最后几行的快速查看,就像head()函数一样。当处理大型数据集时,它特别有帮助,因为它使用户能够检查数据是否完整,并在数据集的末尾发现任何趋势或异常值。 Python中head()和tail()的示例(使用Pandas) import pandas as pd # 创建一个示例DataFrame data = {‘Name’: [‘Ankit’, ‘Bhavya’, ‘Charvi’, ‘Diya’, ‘Eesha’], ‘Age’: [25, 30, 22, 28,…
Leave a Comment介绍 众所周知,Pandas是Python的polars数据操作库。然而,它也有一些缺点。在本文中,我们将学习另一个用Rust编写的强大的Python数据操作库。虽然它是用Rust编写的,但它为我们提供了一个额外的Python程序包。这是使用Python开始使用Polars的最简单的方法,类似于Pandas。 学习目标 在本教程中,您将学习以下内容: Polars数据操作库的介绍 使用Polars进行数据探索 比较Pandas与Polars的速度 数据操作函数 使用Polars进行惰性评估 本文是作为数据科学博文马拉松的一部分发表的。 Polars的特点 它比Pandas库更快。 它具有强大的表达式语法。 它支持惰性评估。 它还具有内存效率。 它甚至可以处理大于可用RAM的大型数据集。 Polars有两个不同的API,即急切API和惰性API。急切执行类似于pandas,代码在遇到时立即运行,并立即返回结果。另一方面,惰性执行直到您需要开发为止才运行。惰性执行可以更高效,因为它避免运行不必要的代码。惰性执行可以更高效,因为它避免运行不必要的代码,这可以提高性能。 应用/用例 让我们来看一些该库的应用,如下所示: 数据可视化:该库与Rust可视化库(如Plotters等)集成,可以用于创建交互式仪表板和美观的可视化,以传达数据的见解。 数据处理:由于其支持并行处理和惰性评估,Polars可以有效处理大型数据集。还可以执行各种数据预处理任务,如数据清洗、转换和操作。 数据分析:借助Polars,您可以轻松分析大型数据集以获取有意义的见解并进行交付。它为我们提供了各种计算和统计计算的函数。还可以使用Polars进行时间序列分析。 除此之外,还有许多其他应用,例如数据连接和合并、使用强大的表达式语法过滤和查询数据、分析统计数据和总结等。由于其强大的应用,它可以在业务、电子商务、金融、医疗保健、教育、政府等各个领域使用。一个例子是从医院收集实时数据,分析患者的健康状况,并生成可视化,例如患某种疾病的患者的百分比等。 安装 在使用任何库之前,您必须先安装它。可以使用pip命令安装Polars库,如下所示:…
Leave a Comment介绍 生成式人工智能(Generative AI)和大型语言模型(Large Language Models,LLMs)给人工智能和机器学习带来了新的时代。这些大型语言模型被用于不同领域的各种应用,并且开启了人工智能的新视角。这些模型在全球范围内的大量文本数据上进行训练,可以以人类一样的方式生成文本。最著名的LLM示例是由OpenAI开发的ChatGPT,它可以执行各种任务,从创作原创内容到编写代码。在本文中,我们将探讨LLMs的一个应用:PandasAI库。PandasAI指南可以被视为Python流行的Pandas库和OpenAI的GPT之间的融合。它非常强大,可以在不编写太多代码的情况下从数据中快速获取洞察。 学习目标 了解Pandas和PandasAI之间的区别 了解PandasAI在数据分析和可视化中的作用 使用PandasAI构建完整的探索性数据分析工作流程 了解编写清晰、简明和具体提示的重要性 了解PandasAI的限制 本文作为”数据科学博文马拉松”的一部分发布。 PandasAI PandasAI是一个使数据分析和可视化任务更加简单的新工具。PandasAI是基于Python的Pandas库构建的,并在其工作中使用生成式人工智能和LLMs。与Pandas不同,您不需要手动分析和处理数据,PandasAI允许您通过提供文本提示来从数据中生成洞察。就像给您的助手下指示一样,他们熟练并能够快速完成工作。唯一的区别是,它不是人类,而是一台机器,可以像人类一样理解和处理信息。 在本文中,我将使用代码示例和解释来回顾使用PandasAI进行完整的数据分析和可视化过程。那么,让我们开始吧。 建立OpenAI帐户并提取API密钥 要使用PandasAI库,您必须创建一个OpenAI帐户(如果您还没有),并使用您的API密钥。可以按照以下步骤进行操作: 访问https://platform.openai.com并创建一个个人帐户。 登录您的帐户。 在右上方点击个人。 从下拉菜单中选择查看API密钥。 创建一个新的密钥。 将密钥复制并存储到您计算机上一个安全的位置。 如果您按照上述步骤操作,那么您已经可以在项目中利用生成式人工智能的强大功能。 安装PandasAI…
Leave a Comment发掘Python中Pandas的潜力学习数据选择中的.loc和.iloc的细节,提升您的数据分析过程
Leave a Comment介绍 在生成式人工智能领域,最近出现了激增和突破,引起了数据领域的混乱。公司们正在努力看如何充分利用这些创新,例如ChatGPT。这将帮助任何企业获得竞争优势。一种全新的前沿创新是将一种名为“PandasAI”的GenAI驱动的数据分析库引入到常规Pandas库中。OpenAI已经做到了这一点。与生成式AI的其他领域不同,PandasAI将GenAI技术应用于分析工具Pandas。 顾名思义,它直接将人工智能应用于传统的Pandas库。Pandas库在数据领域中与Python一起在预处理和数据可视化等任务中变得非常流行,而这种创新使其变得更好。 学习目标 了解新的PandasAI 使用PandasAI进行对话查询 使用PandasAI绘制图表 介绍PandasAI及其后端(GenAI) 本文是数据科学博文马拉松的一部分。 PandasAI是什么? PandasAI是一个使用生成式AI模型在pandas中执行任务的Python库。它是一个集成生成式人工智能功能的库,使用提示工程使Pandas数据框具有对话功能。当我们提到Pandas时,我们会想到数据分析和处理。通过PandasAI,我们试图通过GenAI的帮助提高我们的Pandas的生产力。 为什么使用PandasAI? 在生成式人工智能的帮助下,我们都需要给数据集提供对话提示。这带来了不需要学习或理解复杂代码的优势。数据科学家可以通过与数据集对话的方式查询数据集,使用自然的人类语言并获得结果。这样可以节省预处理和分析的时间。这是一个新的革命,程序员不需要编写代码,他们只需要说出他们的想法,然后看到他们的指令被执行。即使非技术人员也可以构建系统,而无需编写任何复杂的代码! PandasAI如何工作? 在我们看到如何使用PandasAI之前,让我们先看看它是如何工作的。我们在这里多次提到了“生成式人工智能”的术语。它作为实现PandasAI的技术。生成式人工智能(GenAI)是人工智能的一个子集,可以生成各种数据类型,包括文本、音频、视频、图片和3D模型。它通过识别已收集的数据中的模式并利用它们来创建新颖和独特的输出来实现这一目标。 另一个需要注意的是使用大型语言模型(LLMs)。PandasAI已经在LLMs上进行了训练,LLMs是由许多参数(数以千万甚至数十亿)组成的人工神经网络(ANN)模型。所有这些都有助于PandasAI背后的模型能够接受人类指令并在解释之前对其进行标记化处理。PandasAI还被设计用于处理LangChain模型,使构建LLM应用程序更加容易。 开始使用Pandas AI 现在让我们看看如何使用PandasAI。我们将看到两种使用PandasAI的方法。首先是使用LangChain模型,然后是直接实现。 使用LangChain模型 要使用LangChain模型,首先需要安装Langchain包: pip install langchain 然后我们可以实例化一个LangChain对象:…
Leave a Comment当涉及到数据分析时,Pandas是最常用的Python库,用于操作和准备数据让我们来看看列操作的前7个操作
Leave a Comment介绍 随着人工智能(AI)的不断发展,对更快、更高效的计算能力的需求也在增加。机器学习(ML)模型可能需要很大的计算量,并且训练模型可能需要更长的时间。然而,通过使用GPU并行处理能力,可以显著加快训练过程。数据科学家可以更快地迭代,尝试更多的模型,并在更短的时间内构建性能更好的模型。 有几个可供使用的库。今天我们将学习RAPIDS,这是一个简单的解决方案,可以在不需要任何GPU编程知识的情况下使用GPU加速机器学习模型。 学习目标 在本文中,我们将学习: RAPIDS.ai的高级概述 RAPIDS.ai中的库 使用这些库 安装和系统要求 本文是Data Science Blogathon的一部分。 RAPIDS.AI RAPIDS是一套开源软件库和API,用于完全在GPU上执行数据科学流程。RAPIDS提供了出色的性能和速度,使用了与最流行的PyData库相匹配的熟悉的API。它是基于NVIDIA CUDA和Apache Arrow开发的,这是其卓越性能的原因。 RAPIDS.AI如何工作? RAPIDS使用GPU加速机器学习来加快数据科学和分析工作流程。它具有经过优化的GPU核心数据框架,有助于构建数据库和机器学习应用程序,并且设计与Python类似。RAPIDS提供了一套完全在GPU上运行数据科学流程的库。它于2017年由GPU Open Analytics Initiative(GoAI)和机器学习社区的合作伙伴创建,旨在使用基于Apache Arrow的GPU Dataframe加速端到端数据科学和分析流程。RAPIDS还包括与机器学习算法集成的Dataframe API。 更快的数据访问,更少的数据移动…
Leave a Comment介绍 NLP(自然语言处理)可以帮助我们理解大量的文本数据。不需要手动阅读大量文档,我们可以利用这些技术加快理解速度,快速获得主要信息。在这篇博文中,我们将深入探讨如何使用Python中的pandas数据框和NLP工具,通过使用Elicit,对在阿富汗进行性别平等研究时人们的写作内容有一个了解。这些见解可能有助于我们理解在过去几十年中,在一个被认为是对女性或女孩来说最困难的地方之一的国家,为促进性别平等所做的工作和未能取得的成果(世界经济论坛,2023年)。 学习目标 掌握处理CSV文件中的文本分析。 了解如何在Python中进行自然语言处理。 开发有效数据可视化的沟通技巧。 深入了解阿富汗性别平等研究的演变。 本文是数据科学博文马拉松的一部分。 使用Elicit进行文献综述 为了生成底层数据,我使用了Elicit,一款用于文献综述的AI工具(Elicit)。我让这个工具生成与问题“为什么阿富汗的性别平等失败了?”相关的论文列表。然后,我以CSV格式下载了结果列表(我考虑了150多篇论文的随机数量)。这些数据是什么样的?让我们来看一看! 在Python中分析来自Elicit的CSV数据 我们首先将CSV文件读入pandas数据框中: import pandas as pd #识别路径和CSV文件 file_path = ‘./elicit.csv’ #读入CSV文件 df = pd.read_csv(file_path) #CSV的形状…
Leave a Comment介绍 数据的时间序列分析不仅仅是一堆数字,比如Netflix的股票。它是一张迷人的织锦,用Pandas编织着我们的世界的错综复杂的故事。就像一根神秘的线,它捕捉了事件的涨落、趋势的兴衰以及模式的出现。它揭示了隐藏的联系和相关性,塑造了我们过去的形象,并提供了对未来的一瞥。 时间序列分析不仅仅是一种工具。它是通往知识和远见的门户。您将有能力解锁隐藏在数据时间织物中的秘密,将原始信息转化为有价值的见解。此外,它还能帮助您做出明智的决策,减轻风险并利用新兴机会。 让我们一起踏上这个激动人心的冒险之旅,发现时间真正是理解我们的世界的关键。您准备好了吗?让我们一起潜入时间序列分析的迷人领域吧! 学习目标 我们的目标是介绍时间序列分析的概念,强调其在各个领域的重要性,并展示展示实际应用时间序列分析的真实世界示例。 我们将通过展示如何使用Python和yfinance库导入Netflix股票数据来提供实际演示。这样读者将学习获取时间序列数据并为分析做准备的必要步骤。 最后,我们将重点介绍时间序列分析中使用的重要Pandas函数,例如移位、滚动和重新采样,这些函数能够有效地操作和分析时间序列数据。 本文是数据科学博客马拉松的一部分。 什么是时间序列分析? 时间序列是在连续、等间隔的时间间隔内收集或记录的数据点序列。 时间序列分析是一种用于分析随时间收集的数据点的统计技术。 它涉及研究顺序数据中的模式、趋势和依赖关系,以提取见解并进行预测。 它涉及数据可视化、统计建模和预测方法等技术,以有效地分析和解释时间序列数据。 时间序列数据的例子 股票市场数据:分析历史股价以识别趋势和预测未来价格。 天气数据:研究温度、降水和其他变量随时间的变化,以了解气候模式。 经济指标:分析GDP、通货膨胀率和失业率等,以评估经济表现。 销售数据:检查销售数据随时间的变化,以确定模式并预测未来销售额。 网站流量:分析网站流量指标,以了解用户行为并优化网站性能。 时间序列的组成部分 时间序列有4个组成部分。它们是: 趋势组成部分:趋势代表数据中的长期模式,以相对可预测的方式向上或向下移动。 季节性组成部分:季节性是一种定期重复的模式,例如每日、每周、每月或每季度。 周期性组成部分:周期性组成部分对应于遵循商业或经济周期的模式,其特点是增长和衰退的交替时期。…
Leave a Comment在今天的数据驱动世界中,从大量信息中提取有价值的洞见的能力在各个行业中至关重要。人工智能(AI)在各个领域中推动了重大进展,包括数据分析。Pandas AI是流行的Python库Pandas的扩展,正在革新我们探索和理解数据的方式。本文探讨了Pandas如何使用AI和ML来塑造数据分析的未来。 通过AI自动化赋能分析师 Pandas AI通过将AI和机器学习算法纳入数据分析任务中,扩展了著名的Pandas库的功能。通过自动化重复和耗时的过程,分析师可以将重心转移到更高层次的分析和决策上,从而提高生产力和效率。 优化数据分析工作流程 数据清理、预处理和特征工程是数据分析流程中至关重要的步骤。Pandas AI通过自动化这些任务来简化它们,节省了大量时间和精力。分析师可以利用AI算法的强大功能来优化他们的工作流程并确保数据质量。 加速探索性数据分析 探索性数据分析(EDA)是发现数据中的洞见和模式的关键阶段。Pandas AI通过自动化数据探索来加速该过程,使分析师能够高效地发现隐藏的关系和异常。通过获得更深入的洞见,分析师可以做出更明智的决策。 智能缺失数据填充和特征工程 缺失数据是数据分析中常见的挑战。Pandas AI利用AI算法根据数据模式和关系智能填充缺失值。此外,它通过识别和生成捕捉数据中复杂交互和非线性的新变量来自动化特征工程。这确保了全面的分析,同时最大限度地减少了数据间隙。 与机器学习的无缝集成 Pandas AI与机器学习库无缝集成,使分析师能够构建预测模型并从数据中提取更深入的洞见。它通过自动化模型选择、超参数调整和评估来简化机器学习工作流程。分析师可以尝试不同的算法,评估它们的性能,并确定适用于他们特定问题的最准确的模型。 道德考虑和负责任的分析 虽然Pandas AI提供了巨大的潜力,但解决潜在的挑战和道德考虑是很重要的。自动化数据分析任务引发了透明度、问责和偏见等问题。分析师必须在解释和验证AI生成的结果时谨慎行事。他们仍然负责基于工具提供的洞见做出关键决策。 我们的看法 Pandas AI通过利用人工智能的力量,正在革新数据分析领域。通过自动化耗时的任务、加速数据探索和简化机器学习工作流程,Pandas AI使分析师能够高效地提取有价值的洞见。然而,负责任地使用AI至关重要,分析师必须确保结果的透明度、验证和解释。随着我们步入越来越数据中心的未来,Pandas AI将在转变数据分析方面发挥关键作用。它还将塑造我们如何利用人工智能做出有影响力的决策。
Leave a Comment介绍 在今天的世界中,企业和组织都严重依赖数据做出明智的决策。然而,分析大量数据可能是一项耗时且令人望而生畏的任务。这就是自动化发挥作用的地方。通过像Langchain和Gen AI这样的框架,您可以自动化您的数据分析,节省宝贵的时间。 在本文中,我们将深入探讨如何使用Langchain构建自己的代理程序并自动化数据分析。我们还将向您展示如何使用内置的pandas代理程序逐步创建Langchain代理程序的指南。 Langchain是什么? Langchain是一个用于构建具有大型语言模型(如chatGPT)的应用程序的框架。它提供了一种更好的管理内存、提示和创建链(一系列操作)的方法。此外,Langchain为开发人员提供了一个创建代理程序的工具。代理程序是可以根据条件执行一系列操作的实体。 Langchain中的代理程序类型 Langchain中有两种类型的代理程序: 动作代理程序:动作代理程序决定要执行的动作并逐个执行这些动作。 计划-执行代理程序:计划和执行代理程序首先决定要执行的一系列动作,然后逐个执行这些动作。 然而,这两个类别之间没有明确的区别,因为这个概念仍在发展中。 使用Langchain进行数据分析 请安装langchain和openai库。您可以通过下载所需的库,然后将它们导入到您的项目中来完成此操作。以下是如何操作: # 安装langchain和openai库 !pip install langchain openai # 导入库 import os import pandas…
Leave a Comment当您创建管道以处理原始数据时,很可能已经使用过Pandas编写代码以过滤、分组和对数据进行计算只是构建数据的第一步…
Leave a Comment