编辑注:这篇文章是我们的《遇见全能者》系列的一部分,该系列介绍使用NVIDIA Omniverse和OpenUSD加速其3D工作流程并创建虚拟世界的个人创作者和开发者。 作为澳大利亚昆士兰科技大学(QUT)的学生,艾米莉·博默尔在选择追求创意艺术还是科学方面犹豫不决。 然后她发现了工业设计,这使她能够深入研究和编码,同时探索可视化工作流程,如素描、动画和3D建模。 现在,博默尔作为宝马集团(BMW Group)技术办公室的设计实习生将她的技能付诸实践。该团队使用NVIDIA Omniverse,这是一个用于开发和连接3D工具和应用程序的平台,以及通用场景描述(Universal Scene Description,简称OpenUSD),以增强其合成数据生成流程。 博默尔创建了逼真的3D资产,这些资产可以与SORDI.ai一起使用,SORDI.ai是Synthetic Object Recognition Dataset for Industries的缩写。SORDI.ai由宝马集团、微软和NVIDIA合作发表,帮助开发人员和研究人员简化和加速用于生产的AI训练。为了自动化图像生成,该团队开发了一种基于Omniverse Replicator的扩展,Omniverse Replicator是用于创建自定义合成数据生成工具的软件开发工具包。 作为SORDI.ai团队的一员,博默尔使用Blender和Adobe Substance Painter设计具有高度物理准确性和照片真实感的3D资产,有助于确保合成数据可以用于高效训练AI模型。 博默尔创建的所有资产都用于在NVIDIA Isaac Sim平台上测试和模拟自主机器人,该平台为开发人员提供了一套合成数据生成能力,可以为光线真实、物理准确的虚拟环境提供动力。 为训练AI创建逼真的3D资产 作为设计实习生,博默尔的主要任务是动画和3D建模。这个过程始于拍摄目标物体的照片。然后,她使用这些2D照片作为参考,在Blender中将其与3D模型对齐。…
Leave a CommentTag: NVIDIA Isaac Sim
机器人正在仓库中搬运货物、包装食品、帮助组装车辆——当它们不翻转汉堡或者冲泡拿铁时。 它们是如何如此迅速地变得如此熟练呢?机器人模拟。 它正在以飞跃的进步改变我们周围的各个行业。 机器人模拟简介 机器人模拟器将虚拟机器人放置在虚拟环境中,以测试机器人的软件,而无需实际机器人。而最新的模拟器可以生成数据集,用于训练将在实际机器人上运行的机器学习模型。 在这个虚拟世界中,开发者创建机器人、环境和其他机器人可能遇到的素材的数字版本。这些环境可以遵守物理定律,并模拟真实世界的重力、摩擦、材料和光照条件。 谁在使用机器人模拟? 如今,机器人在大规模上提升了业务。一些最大和最具创新性的机器人公司都依赖于机器人模拟。 得益于模拟,配送中心每天可以处理数千万个包裹。 亚马逊机器人使用它来支持其配送中心。宝马集团借助它加速其汽车装配厂的规划。软性机器人应用它来完善食品包装的抓取和放置。 全球各地的汽车制造商都在用机器人来支持他们的业务。 “汽车公司雇佣了将近1400万人。数字化将提高这个行业的效率、生产力和速度,” NVIDIA首席执行官Jensen Huang在最新的GTC主题演讲中说道。 机器人模拟的工作原理简介 一个先进的机器人模拟器首先应用物理基本方程。例如,它可以使用牛顿运动定律来确定物体在一个小时间增量或时间步长内的运动方式。它还可以结合机器人的物理约束条件,比如由铰链般的连接构成,或者无法穿过其他物体。 模拟器使用各种方法来检测物体之间的潜在碰撞,识别碰撞物体之间的接触点,并计算阻止物体相互穿过的力或冲量。模拟器还可以计算用户寻求的传感器信号,比如机器人关节处的扭矩或机器人夹持器与物体之间的力。 然后,模拟器将根据用户的要求重复这个过程。一些模拟器,比如基于NVIDIA Omniverse的NVIDIA Isaac Sim应用程序,还可以在每个时间步长上提供物理上准确的模拟器输出的可视化。 使用机器人模拟器的成果 机器人模拟器用户通常会导入机器人的计算机辅助设计模型,并导入或生成感兴趣的对象来构建虚拟场景。开发者可以使用一组算法来执行任务规划和运动规划,然后指定控制信号来执行这些计划。这使得机器人能够执行任务并以特定方式移动,比如拾取一个物体并将其放置在目标位置。 开发者可以观察计划和控制信号的结果,然后根据需要进行修改以确保成功。最近,有一种向基于机器学习的方法的转变。所以,用户不是直接指定控制信号,而是指定所需的行为,比如移动到一个位置而不发生碰撞。在这种情况下,一个数据驱动的算法会根据机器人的模拟传感器信号生成控制信号。 这些算法可以包括模仿学习,其中人类演示可以提供参考,以及强化学习,机器人通过智能的试错学习来实现行为,通过加速的虚拟体验快速学习多年的经验。…
Leave a Comment如何帮助机器人建造更好的机器人?通过模拟更多的机器人。 NVIDIA创始人兼CEO黄仁勋今天展示了领先的电子制造商Quanta如何使用AI启用的机器人来检查其产品的质量。 在本周的台北国际电脑展上的主题演讲中,黄仁勋介绍了电子制造商如何数字化其最先进的工厂。 例如,Quanta子公司Techman Robot的机器人使用NVIDIA Isaac Sim —— 一款基于NVIDIA Omniverse构建的机器人模拟应用程序,开发了一个定制的数字孪生应用程序,以改进这家总部位于台湾的电子产品提供商的生产线上的检查。 以下演示展示了Techman如何使用Isaac Sim来优化制造线上机器人的机器人检查。事实上,这是机器人建造机器人。 自动光学检查,或AOI,帮助制造商更快地识别缺陷,并向全球客户交付高质量的产品。现在启用AOI的NVIDIA Metropolis视觉AI框架还用于优化从汽车到电路板等产品的检查工作流程。 Techman通过使用Isaac Sim模拟、测试和优化其最先进的协作机器人或合作机器人,与使用云端的NVIDIA AI和GPU进行训练和机器人本身的推理,开发了AOI。 Isaac Sim是基于NVIDIA Omniverse构建的——一个用于构建和操作工业元宇宙应用的开放式开发平台。 Techman机器人AOI解决方案的独特特点包括将检查摄像头直接放置在关节式机器人手臂上,以及GPU集成在机器人控制器中。 这使得机器人能够检查固定摄像头无法访问的产品区域,并利用边缘上的AI即时检测缺陷。 Techman的首席运营官Scott Huang表示:“与其他机器人品牌相比,Techman机器人的独特特点在于其内置的视觉系统和AI推理引擎。NVIDIA RTX…
Leave a Comment在疫情以来的首次现场主题演讲中,NVIDIA的创始人兼CEO黄仁勋今天在台北举行的COMPUTEX大会上宣布了一些平台,这些平台可以帮助公司乘风破浪,参与到一波历史性的生成式人工智能浪潮中,这个浪潮正在改变从广告到制造业再到电信等行业。 “我们回来了,”黄仁勋在他的家中厨房进行了几年的虚拟主题演讲之后在舞台上大声喊道。“我已经有将近四年没有公开演讲了–祝我好运!” 他向约3500名观众演讲了近两个小时,介绍了加速计算服务、软件和系统,这些都使新的商业模式成为可能,也让现有的商业模式更加高效。 “加速计算和人工智能标志着计算机的重新发明,”黄仁勋说道,他在过去一周在家乡的旅行每天都被当地媒体追踪报道。 为了展示它的强大,他使用了他所在的巨大的8K墙,展示了一个文本提示,生成了一首主题歌,可以随意地唱,就像任何卡拉OK歌曲一样。黄仁勋偶尔用他的家乡语言和观众开玩笑,并短暂地带领观众唱了这首新歌。 “现在我们处于一个新的计算时代的临界点,加速计算和人工智能已经被全球几乎所有的计算和云计算公司所接受,”他说道,指出现在有40,000家大型公司和15,000家初创公司使用NVIDIA技术,去年CUDA软件下载量达到2500万次。 主题演讲的重要新闻公告 Grace Hopper提供大内存超级计算机,用于生成式人工智能。 模块化参考架构可以创建100多个加速服务器变体。 WPP和NVIDIA在Omniverse中创建数字广告内容引擎。 SoftBank和NVIDIA在日本建立5G和生成式人工智能数据中心。 网络技术加速基于以太网的人工智能云。 NVIDIA ACE for Games利用生成式人工智能为角色赋予生命。 全球的电子制造商都在使用NVIDIA人工智能。 企业人工智能的新引擎 对于需要最佳人工智能性能的企业,他推出了DGX GH200,一个大内存人工智能超级计算机。它使用NVIDIA NVLink将多达256个NVIDIA GH200 Grace Hopper超级芯片组合成一个单一的数据中心大小的GPU。…
Leave a Comment