Press "Enter" to skip to content

Tag: language models

‘Starling-7B 通过人工智能反馈进行强化学习的LLM’

加州大学伯克利分校的研究团队引入了Starling-7B,一个采用AI反馈强化学习(RLAIF)的开源大型语言模型(LLM)。借助先进的GPT-4标记的排名数据集Nectar以及精心设计的奖励训练和策略调整流程,Starling-7B-alpha在语言模型性能方面树立了新的标准,在MT-Bench上超越了所有模型,除了OpenAI的GPT-4和GPT-4 Turbo。 强化学习的潜力 虽然监督微调在聊天机器人系统开发中已经表现出了有效性,但是强化学习从人类反馈(RLHF)或AI反馈(RLAIF)中提升模型在规模上的潜力一直受到了有限的探索。早期的模型,如Zephyr-7B和Neural-Chat-7B,在与领先的监督微调(SFT)模型相比没有充分展示RLHF的潜力。 为了弥补这一差距,研究团队推出了Nectar,一个精心设计的高质量排名数据集,专门为聊天而量身定制,包括183K个提示和380万个成对比较。该数据集旨在促进对RLHF的更全面研究,提供了从各种模型中获取的多样化的提示。 奖励模型Starling-RM-7B-alpha的发布以及在HuggingFace上进行的精调LLM模型Starling-LM-7B-alpha的发布,标志着开源人工智能研究的重要进展。值得注意的是,该模型的MT-Bench分数从7.81上升到令人印象深刻的8.09,伴随着AlpacaEval的显著提高,将聊天机器人的有用性从88.51%提升至91.99%。 还阅读: 什么是强化学习以及它如何工作(2023年) 模型评估 评估Starling-7B存在独特的挑战。随着RLHF后LLM表现出卓越的有用性和安全特性,MT-Bench和AlpacaEval分数的提高证明了这一点。然而,它在基于知识的问答、数学和编码方面的基本能力仍然保持稳定或略有下降。 将其纳入LMSYS聊天机器人竞技场进行直接聊天和匿名比较提供了测试人类偏好的平台。评估还突出了使用OpenLLM排行榜作为聊天模型基准的局限性,强调了Alpaca Eval和MT-Bench提供的微妙评估的重要性。 合成偏好数据的Goodhart定律 需要考虑的一个关键方面是合成偏好数据的Goodhart定律。虽然更高的MT-Bench分数表示根据GPT-4的改进模型性能,但不一定与人类偏好相关。RLHF主要增强了响应风格,特别是在有用性和安全性等方面,展示了在线RL方法在广泛的偏好数据上的扩展潜力。 局限性 尽管Starling-7B表现出色,但在涉及推理或数学任务方面仍存在局限性。此外,对越狱提示的敏感性和偶尔输出过于冗长的问题也得到了承认。研究团队致力于持续改进,欢迎社区的合作,以加强开放数据集、奖励模型和使用RLHF的语言模型。 我们的观点 以其RLAIF方法和细致入微的数据集创建,Starling-7B体现了强化学习在语言模型中的潜力。尽管仍面临挑战和限制,但对改进的承诺以及与更广泛社区的合作,使Starling-7B成为人工智能研究领域中前沿的标杆。请继续关注更多更新,团队将深入探讨RLHF机制的优化和对人工智能安全研究的贡献。

Leave a Comment

深探:中国最新的语言模型的支配地位

在最新的进展中,DeepSeek LLM在语言模型领域崭露头角,拥有令人印象深刻的670亿个参数。DeepSeek LLM在庞大的英语和中文数据集上经过精心训练,并通过开源其7B/67B基础版和7B/67B聊天版,为研究合作设定了新标准。本文深入探讨了该模型在各个领域的卓越能力,并评估了其在复杂评估中的表现。 卓越的通用能力 DeepSeek LLM 67B基础版已通过在推理、编码、数学和中文理解等关键领域中胜过Llama2 70B基础版证明了其实力。该模型的实力延伸到多个领域,标志着语言模型演进的重要飞跃。 精通编码和数学 DeepSeek LLM 67B聊天版在编码方面表现出色,其HumanEval Pass@1得分为73.78。该模型在数学能力方面也表现卓越,GSM8K 0-shot得分为84.1,Math 0-shot得分为32.6。值得注意的是,它在具有挑战性的匈牙利国家中学考试中获得了惊人的65分,彰显出出色的泛化能力。 中文语言掌握能力 在与GPT-3.5的中文语言能力对比中,DeepSeek LLM 67B聊天版成为中文语言掌握能力的领先者。评估结果凸显了该模型的优势,标志着自然语言处理的重大进展。 评估见解 为了公正评估DeepSeek LLM 67B聊天版,开发者提供了新的问题集,减少了数据污染,并考虑到特定的测试集。匈牙利国家中学考试成为评估该模型数学能力的试金石,揭示了该模型在解决复杂问题方面的实力。 此外,谷歌于2023年11月15日发布的“指令遵循评估数据集”为评估DeepSeek LLM…

Leave a Comment

令人震惊的现实:ChatGPT对数据泄露的脆弱性

最近一份名为“从ChatGPT中提取训练数据”的研究论文揭示了一项重大发现,这个广泛应用的语言模型存在一个令人震惊的漏洞。研究团队的调查显示,仅需两百美元就可以提取数兆字节的ChatGPT训练数据,揭示了一次前所未有的数据泄露。 研究强调,像ChatGPT这样的自然语言理解模型是通过从公共互联网获取的数据进行训练的。该论文揭示了一种攻击方法,可以通过查询模型来提取其所接受训练的精确数据。令人震惊的是,研究人员估计,通过进一步的财务投资,可能可以提取高达一千兆字节的ChatGPT训练数据集。 这次数据泄露具有重大意义,因为它针对的是一个“对齐”的生产模型,旨在避免披露大量的训练数据。然而,研究人员表明,通过一种开发的攻击方法,可以迫使模型披露其大量的训练数据。 训练数据提取攻击及其对你的重要性 揭示这一发现的研究团队多年来一直致力于“训练数据提取”项目。当ChatGPT这样的机器学习模型保留其训练数据的随机方面时,就会发生训练数据提取,使其容易受到攻击。这篇论文首次揭示了一个对一个已上线的对齐模型——ChatGPT的训练数据提取攻击。在图片中,您可以看到电子邮件和联系信息是被分享的。 这个漏洞的影响是深远的,尤其是对那些拥有敏感或原始数据的人士而言。除了数据泄露的担忧,该论文还强调了模型记忆和重复训练数据的风险,这对依赖创新性的产品来说是一个关键因素。 从ChatGPT中提取数据 这项研究提供了成功从ChatGPT提取训练数据的证据,即使该模型只能通过聊天API进行访问,并且可能已经对抗数据提取进行了对齐。该攻击发现了一个绕过隐私保护的漏洞,使ChatGPT脱离了其微调对齐并恢复到其预训练数据。 研究团队强调,ChatGPT的对齐隐藏了记忆功能,当受到特定攻击时,数据输出的频率显著增加。尽管外表看起来不是这样,但该模型的记忆能力是传统攻击的150倍。 对测试和红队模型的影响 该论文提出了对ChatGPT广泛使用的担忧,该模型已经产生了超过十亿人小时的交互作用。然而,数据输出的高频率仍然未被注意到。语言模型中的潜在漏洞,以及区分表面上安全和真正安全模型之间的挑战,都存在重大挑战。 现有的记忆测试技术无法揭示ChatGPT的记忆能力,因为对齐步骤对其进行了隐藏。这凸显了需要增强的测试方法来确保语言模型的安全性。 还可阅读: 导航隐私问题:ChatGPT用户的聊天标题泄露解释 我们的观点 揭示ChatGPT对数据泄露的漏洞,凸显了对机器学习模型的演变中的安全性分析的重要性。需要进一步的研究来确保这些系统的安全性。在当今技术驱动的时代,ChatGPT对数据泄露的敏感性提醒了保护先进语言模型面临的挑战。

Leave a Comment

探索对OpenAI模型的开源替代品

介绍 11月在人工智能领域发生了许多重大事件。从GPT存储的推出,到GPT-4-turbo的发布,再到OpenAI的惨败,这一切都引发了一个重要的问题:封闭模型和背后的人员有多可靠?当你在生产中使用的模型因为一些内部公司事件而崩溃时,这将会是一次不愉快的经历。这对于开源模型来说并不是一个问题。您对部署的模型拥有完全控制权。您对数据和模型都有主权。但是是否可以用GPT代替开源模型?值得庆幸的是,许多开源模型已经达到或超过了GPT-3.5模型的性能。本文将探讨一些性能最佳的开源LLMs和LMMs替代方案。 学习目标 讨论开源大型语言模型。 探索最先进的开源语言模型和多模态模型。 对大型语言模型进行轻量化介绍。 了解在本地和云端运行LLMs的工具和服务。 本文作为数据科学博文马拉松的一部分发表。 什么是开源模型? 当模型的权重和架构是自由可用的时,我们称之为开源模型。这些权重是大型语言模型的预训练参数,例如Meta的Llama。这些通常是基础模型或未经调优的原始模型。任何人都可以使用这些模型,并将其在自定义数据上进行微调,以执行下游操作。 但是它们是否是真正的开源?数据呢?由于有关版权内容和数据敏感性的种种问题,大多数研究实验室都不会公开发布训练基础模型时所使用的数据。这也涉及到模型的许可问题。每个开源模型都有类似于任何其他开源软件的许可证。许多基础模型(例如Llama-1)配有非商业许可证,这意味着您不能使用这些模型来赚钱。但是像Mistral7B和Zephyr7B这样的模型配有Apache-2.0和MIT许可证,可以在任何地方使用而不会有顾虑。 开源替代方案 自从Llama发布以来,开源领域一直在追赶OpenAI模型。迄今为止,取得了令人鼓舞的成果。在GPT-3.5发布一年内,我们已经拥有了参数更少但在性能上与GPT-3.5相媲美甚至更好的模型。但是GPT-4仍然是执行从推理和数学到代码生成等各种一般任务的最佳模型。进一步观察开源模型领域的创新和资金支持的步伐,我们很快将会有越来越接近GPT-4性能的模型。现在,让我们讨论一些出色的开源模型的替代方案。 Meta’s Llama 2 Meta在今年7月发布了他们最好的模型Llama-2,并因其令人印象深刻的能力而迅速走红。Meta发布了四个不同参数规模的Llama-2模型,分别是Llama-7b、13b、34b和70b。这些模型在各自的类别中足以击败其他开源模型。但是现在,诸如mistral-7b和Zephyr-7b等多个模型在许多基准测试中优于较小的Llama模型。Llama-2 70b仍然是其类别中最好的之一,可以作为GPT-4在摘要、机器翻译等任务上的替代品。 Llama-2在许多基准测试中表现优于GPT-3.5,并且能够接近GPT-4,使其成为GPT-3.5甚至在某些情况下是GPT-4的一个有价值的替代品。以下图表是由Anyscale提供的Llama和GPT模型的性能比较。 有关Llama-2的更多信息,请参阅HuggingFace上的博客。这些LLM经过微调后在自定义数据集上表现良好。我们可以对模型进行微调,以在特定任务中发挥更好的性能。 不同的研究实验室也发布了经过微调的Llama-2版本。这些模型在许多基准测试中显示出比原始模型更好的结果。这款经过微调的Llama-2模型,Nous-Hermes-Llama2-70b,由Nous Research经过超过300,000个自定义指令进行了微调,使其比原始的meta-llama/Llama-2-70b-chat-hf更好。 查看HuggingFace的排行榜。您可以找到比原始模型效果更好的经过微调的Llama-2模型。这是开源模型的优点之一。根据需求,可以选择多种模型。 Mistral-7B Mistral-7B发布以来,它已成为开源社区的宠儿。它的性能要远远优于同类模型,并接近GPT-3.5的能力。这个模型可以在许多情况下替代Gpt-3.5,比如摘要、改写、分类等。…

Leave a Comment

KOSMOS-2:微软的多模态大型语言模型

介绍 2023年是一个人工智能的年份,从语言模型到稳定的扩散模型。其中一个新的玩家登上了舞台,那就是由微软开发的KOSMOS-2。它是一个多模态大型语言模型(MLLM),在理解文本和图像方面具有开创性的能力。开发语言模型是一回事,而为视觉创建模型是另一回事,但拥有同时具备这两种技术的模型则是另一个全新层次的人工智能。在本文中,我们将深入探讨KOSMOS-2的特点和潜在应用,以及它对人工智能和机器学习的影响。 学习目标 了解KOSMOS-2多模态大型语言模型。 了解KOSMOS-2如何执行多模态接地和指称表达生成。 深入了解KOSMOS-2在现实世界中的应用。 在Colab中使用KOSMOS运行推理。 本文是作为 数据科学博客马拉松 的一部分发布的。 了解KOSMOS-2模型 KOSMOS-2是微软研究团队的一项成果,他们在一篇名为“Kosmos-2:将多模态大型语言模型接地到世界”的论文中介绍了这个模型。KOSMOS-2旨在同时处理文本和图像,并重新定义我们与多模态数据的交互方式。KOSMOS-2基于基于Transformer的因果语言模型架构构建,类似于其他著名模型如LLaMa-2和Mistral AI的7b模型。 然而,KOSMOS-2的独特训练过程是其与众不同之处。它使用一组庞大的图像-文本对训练数据集,称为GRIT,其中文本以特殊令牌形式包含了对图像中物体的引用边界框。这种创新的方法使KOSMOS-2能够提供对文本和图像的新理解。 什么是多模态接地? KOSMOS-2的一个亮点功能是其执行“多模态接地”的能力。这意味着它可以为图像生成描述对象及其在图像中的位置的字幕。这大大减少了语言模型中的“幻觉”问题,极大地提高了模型的准确性和可靠性。 这个概念通过独特的令牌将文本与图像中的对象联系起来,有效地将对象“接地”到视觉环境中。这减少了幻觉,增强了模型生成准确图像字幕的能力。 指称表达生成 KOSMOS-2在“指称表达生成”方面也表现出色。这个功能允许用户以图像中特定边界框和问题的方式提示模型。然后,模型可以回答有关图像中特定位置的问题,为理解和解释视觉内容提供了强大的工具。 这种令人印象深刻的“指称表达生成”用例允许用户使用提示,并为与视觉内容的自然语言交互打开了新的途径。 使用KOSMOS-2进行代码演示 我们将看到如何在Colab上使用KOSMOS-2模式进行推理。在这里找到完整的代码:https://github.com/inuwamobarak/KOSMOS-2 步骤1:设置环境 在这一步中,我们安装必要的依赖库,如🤗 Transformers、Accelerate和Bitsandbytes。这些库对使用KOSMOS-2进行高效推理至关重要。 !pip install…

Leave a Comment

LLM革命:改变语言模型

介绍 在过去几年中,语言模型领域经历了一场巨大的演变,特别是随着大规模语言模型(LLMs)的出现。这些模型具备数十亿个参数和对自然语言的深刻理解,对于改变人工智能领域起到了关键作用。今天,我们将探索这场革命,重点介绍从闭源到开源LLMs的转变,精细调整的重要性以及最近出现的高效调整技术的发展。 学习目标: 了解闭源和开源LLMs的区别。 了解LLMs中的传统和参数高效调整。 探索不同的参数高效调整策略。 学习使用Ludwig进行高效调整。 闭源vs开源LLMs:选择正确的方法 语言模型领域存在着闭源模型(如OpenAI的ChatGPT、GPT 3.5和GPT 4)和开源变种(如Meta、Google和各种研究实验室提供的)之间的两极分化。闭源LLMs由于其管理基础设施和快速概念验证能力,成为一个引人注目的起点。这些模型提供高质量的预训练数据集,并且无需设置基础设施,使得那些探索LLMs能力的人可以轻松入门。 然而,尽管闭源LLMs易于获取,但它们存在根本性的局限性。它们缺乏模型所有权和极少的自定义能力,特别是对于数据隐私和模型控制至关重要的领域,这使得闭源LLMs不太适合长期投资。相比之下,开源LLMs提供了一个有希望的替代方案。它们使得完全拥有模型和自定义成为可能,并便利地获得开源空间中的创新发展。而付出的代价则是主机费用和困难。 传统微调和参数高效微调 微调成为了最大化LLMs潜力的关键过程,特别是考虑到特定领域任务的情况下。闭源模型常常缺乏所需的灵活性进行微调,而开源模型则可以完全控制这个过程。微调允许通过更新模型权重将预训练的LLMs适应于特定任务,从而提高性能。这是将这些通用模型个性化为专用应用的手段,为独特任务优化性能。 关于微调和类似检索增强生成(RAG)模型之间的辩论,重点在于是否需要针对具体任务进行定制的模型,而非通用智能模型。开源LLMs的性质允许自定义和高效微调以实现卓越的任务特定性能。 传统微调涉及更新所有模型参数,这一过程已被证明是资源密集型、耗时且不总能获得最佳的任务特定性能。然而,参数高效微调的最新创新取得了突破。通过冻结预训练LLM并仅训练一小部分特定任务层(不到总模型权重的1%),高效微调变得既节约资源又更有效。 向参数高效微调的转变显著影响了LLMs如何适应特定任务。通过仅关注训练少量特定任务层,这个过程变得更具成本效益和高效性。这种创新方法在较小数据集上实现了最佳任务特定性能,展示了开源LLMs相对于闭源模型的潜力。 Meta等人的LIMA论文等研究支持了在较小数据集上进行微调可以超越GPT 4等闭源模型性能的观点。这种通过较少数据实现更多的概念的概念突出了开源LLMs在适当微调下的效率和效果。 理解高效训练策略 在利用预训练模型进行特定任务时,LoRA(低秩自适应)和QLoRA(量化低秩自适应)已经成为有效微调大型语言模型(LLMs)的创新方法。这些方法对于将预训练模型定制为专用任务而最小化附加参数非常重要。 LoRA:对体系结构的深入研究 LoRA的体系结构涉及低秩分解,通过将变压器架构中的大型权重矩阵分解为较小矩阵来实现。在变压器的上下文中,LoRA专注于查询,键和值线性投影。 通常,这些线性投影具有大的权重矩阵,例如1024×1024,LoRA将其分解为较小的矩阵,例如1024×8和8×1024。这些较小的矩阵相乘,可以产生原始的维度。这种压缩大大减少了可调参数的数量,约为总LLM参数的一半到1%。 在变压器体系结构的上下文中,LoRA为键和查询投影层集成了适配器模块。这些通过低秩分解构造的适配器保持了原始形状,同时使其能够插入到变压器层中。基本层保持冻结状态,只有适配器权重是可训练的。…

Leave a Comment

在Python中进行结构化LLM输出存储和解析

介绍 生成AI目前在全球范围内广泛使用。大型语言模型能够理解提供的文本并基于此生成文本的能力,已经导致了从聊天机器人到文本分析器的众多应用。但是,这些大型语言模型通常以非结构化的方式生成文本。有时候,我们希望LLM生成的输出以结构化的形式呈现,比如JSON(JavaScript对象表示)格式。假设我们正在使用LLM来分析社交媒体帖子,并且我们需要LLM生成的输出在代码中本身作为JSON/Python变量,以执行其他任务。通过Prompt Engineering可以实现这一点,但需要花费大量时间来调整提示。为了解决这个问题,LangChain引入了输出解析功能,可以用于将LLM的输出转换为结构化格式。 学习目标 解释大型语言模型生成的输出 使用Pydantic创建自定义数据结构 了解提示模板的重要性,并生成一个格式化LLM输出的模板 学习如何使用LangChain创建LLM输出的格式化指令 了解如何将JSON数据解析为Pydantic对象 本文是数据科学博文马拉松的一部分。 LangChain和输出解析是什么? LangChain是一个Python库,可以让您在短时间内构建与大型语言模型相结合的应用程序。它支持多种模型,包括OpenAI GPT LLM、Google的PaLM,甚至是Hugging Face中提供的开源模型,如Falcon、Llama等等。借助LangChain,定制大型语言模型的提示变得轻而易举,它还配备了一个开箱即用的向量存储库,可以存储输入和输出的嵌入。因此,可以使用它来创建在几分钟内查询任何文档的应用程序。 LangChain使大型语言模型能够通过代理从互联网上获取信息。它还提供了输出解析器,允许我们从大型语言模型生成的输出中结构化数据。LangChain提供了不同的输出解析器,如列表解析器、日期时间解析器、枚举解析器等等。在本文中,我们将介绍JSON解析器,它可以将LLM生成的输出解析为JSON格式。下面,我们可以观察到一个典型的流程,即将LLM输出解析为Pydantic对象,从而创建出一组可供Python变量直接使用的数据。 入门-设置模型 在本节中,我们将使用LangChain来设置模型。在本文中,我们将始终使用PaLM作为我们的大型语言模型。我们将使用Google Colab作为我们的环境。您可以将PaLM替换为任何其他大型语言模型。我们将首先导入所需的模块。 !pip install google-generativeai langchain 这将下载LangChain库和与PaLM模型一起使用的google-generativeai库。 需要langchain库来创建自定义提示并解析大型语言模型生成的输出。…

Leave a Comment

大型语言模型对医学文本分析的影响

简介 在一个正在经历技术革命的世界中,人工智能和医疗保健的融合正在重新塑造医学诊断和治疗的格局。在这一转变背后默默支持的是大型语言模型(LLMs)在医疗、健康领域和主要的文本分析中的应用。本文深入探讨了LLMs在基于文本的医疗应用领域的作用,并探索了这些强大的人工智能模型如何革新医疗保健行业。 图片来源-约翰·斯诺实验室 学习目标 了解大型语言模型(LLMs)在医学文本分析中的作用。 认识现代医疗保健中医学影像的重要性。 了解医学影像在医疗保健中所面临的挑战。 理解LLMs在自动化医学文本分析和诊断中的辅助作用。 欣赏LLMs在分诊关键医疗案例中的效率。 探索LLMs如何根据患者病史贡献个性化治疗计划。 理解LLMs在协助放射科医师中发挥的协同作用。 发现LLMs在医学生和医疗从业人员教育中的作用。 本文是数据科学博文马拉松的一部分。 医学影像和医疗保健的未见世界 在我们深入了解LLMs的世界之前,让我们先停下来欣赏医学影像的存在。它是现代医学中的支柱,帮助可视化和检测疾病,并监测许多治疗进展。尤其是放射学在X射线、核磁共振、CT扫描等医学影像方面依赖重大。 然而,这些医学影像的宝库也带来了一个挑战:庞大的数量。医院和医疗机构每天使用大量的医学影像。人工分析和解读这一泛滥的数据是困难、耗时且容易出错的。 图片来源-一步到位诊断 除了在分析医学影像方面发挥关键作用外,大型语言模型在理解和处理基于文本的医学信息方面也表现优秀。它们有助于理解复杂的医学术语,甚至帮助解释笔记和报告。LLMs提供更高效、更准确的医学文本分析,提升医疗专业人员和医学分析的整体能力。 有了这样的认识,让我们进一步探索LLMs在医学影像和文本分析中如何革新医疗保健行业。 LLMs在医学文本分析中的应用 在了解大型语言模型在医疗保健领域中扮演的多面角色之前,让我们简要看一下它们在医学文本分析领域的主要应用: 疾病诊断和预后:LLMs可以搜索大量的医学文本数据库,协助医疗保健提供者诊断各种疾病。它们不仅可以帮助初步诊断,还可以根据足够的上下文信息对疾病的进展和预后进行有根据的猜测。 临床记录和电子健康记录:处理广泛的临床文件可能对医疗专业人员来说是耗时的。LLMs提供了一种更高效的方法来转录、总结和分析电子健康记录(EHR),使医疗保健提供者能够更专注于患者护理。 药物发现和重用:通过挖掘大量的生物医学文献,LLMs可以找到潜在的药物候选,并提出现有药物的替代用途,加速了药理学中的发现和重用过程。 生物医学文献分析:不断增长的医学文献库可能令人不知所措。LLMs可以筛选出大量的科学论文,识别关键发现,并提供简洁的摘要,帮助更快地吸收新知识。…

Leave a Comment

如何通过Langchain来掌握简历排名?

介绍 在不断发展的就业市场中,雇主经常为每个职位空缺收到大量的简历而感到不知所措。筛选这些简历,确定最合适的候选人,是一项耗时且令人望而却步的任务。为应对这一挑战,我们将深入介绍使用Langchain这个强大的语言处理工具来创建一个复杂的简历排序应用程序。该应用程序将根据指定的关键技能自动过滤简历,并根据技能匹配程度对其进行排序。 学习目标 在Langchain下开发简历排序应用程序的深入理解 简化候选人评估过程 高效地确定适合的求职申请者 本文发表在Data Science Blogathon中。 人工智能驱动简历排序的重要性 节省时间:将人工智能视为您节省时间的助手。它可以在几秒钟内处理大量简历,因此您不需要花费数小时在此上。这使您可以专注于其他重要任务。 智能选择:人工智能不仅快速,而且智能。它可以发现与您的职位要求完全匹配的简历,帮助您做出更好的招聘决策,并更快地找到合适的人才。 竞争优势:在一个职位空缺吸引数十甚至数百位申请者的世界中,使用人工智能可以使您具备竞争优势。您不仅跟上了竞争的脚步,还在高效和有效的招聘方面走在了前列。 减轻压力:翻阅简历可能会带来压力。人工智能可以减轻压力,使招聘过程更加顺利和令人愉快。 因此,让我们踏上这个旅程,逐步了解如何创建自己的人工智能驱动简历排序工具。 设定舞台 为何需要简历排序? 招聘过程是任何组织增长的重要部分。然而,随着求职者数量的增加,手动筛选简历可能是一项耗时的任务,容易出现人为错误。简历排序通过自动化识别最合适的候选人的过程来减轻这一负担。这不仅节省时间,还确保不会忽视任何潜在的候选人。 介绍Langchain Langchain是一个全面的语言处理工具,赋予开发人员执行复杂文本分析和信息提取任务的能力。它的功能包括文本分割、嵌入、顺序搜索和问答检索。通过利用Langchain,我们可以自动从简历中提取重要信息,使排序过程更加高效。 语言模型在简历排序中的作用 在数字时代,每天都会产生大量的文本数据,能够利用和理解语言的能力变得至关重要。语言模型结合自然语言处理(NLP)技术,已经成为自动化各种与文本相关任务的重要工具。本节探讨了语言模型的重要性、NLP的重要性以及Langchain如何增强简历排序中的NLP功能。 理解语言模型 语言模型是设计用于理解、生成和操作人类语言的计算系统。它们本质上是通过处理大量文本数据来学习语言的结构、语法和语义的算法。由于深度学习和神经网络的进步,这些模型已经得到了显著的发展。 现代语言模型的一个关键特点是它们能够预测在给定上下文中某个单词或短语出现的概率。这种预测能力使它们能够生成连贯且与语境相关的文本。像OpenAI开发的GPT-3这样的语言模型,在各种自然语言理解任务中表现出色,使其成为广泛应用的有价值工具。…

Leave a Comment

《在Langchain中使用链条的综合指南》

介绍 迈入语言处理的前沿!在语言成为人类与技术之间的重要纽带的领域中,自然语言处理取得了一些非凡的成就。在这一进展中,有一项具有突破性意义的大型语言模型,它正在重塑我们与基于文本的信息的互动方式。在这个全面的学习之旅中,你将深入了解 LangChain,这是一种前沿工具,正在重新塑造我们与基于文本的信息的互动方式。你是否曾经想过,“Langchain”是什么链条? LangChain作为大型语言模型领域的门户独树一帜,它提供了深入理解这些模型如何将原始输入转化为精细和类似人类回答的能力。通过这种探索,你将揭开 LangChain 的基本构建模块,从LLMChain和Sequential Chains到Router Chains的复杂运作。 学习目标 了解 LangChain 的核心组成部分,包括LLMChains和Sequential Chains,看看输入是如何在系统中流动的。 学会以连贯的方式整合不同的元素,探索提示模板和语言模型之间的联系。 获得在实际任务中创建功能性链条的实际经验。 培养通过微调结构、模板和解析技术来提高链条效率的技能。 本文是“数据科学博文马拉松”的一部分。 什么是LLM? 大语言模型(LLM)是一种旨在理解和生成类似人类文本的人工智能类型。这些模型(如OpenAI的GPT-3.5)通过训练大量文本数据来了解人类语言的模式和结构。它们可以执行各种与语言相关的任务,包括翻译、内容生成、回答问题等。 LLMs是自然语言处理中宝贵的工具,广泛应用于聊天机器人、内容生成和语言翻译等领域。 什么是LangChain? 在我们揭开 LangChain Chains 的复杂性之前,让我们先理解…

Leave a Comment

利用大型语言模型提升客户调查反馈分析

介绍 欢迎来到客户反馈分析的世界,在这里,客户意见的未开发财富可以塑造您的业务的成功。在当今激烈的竞争和大型语言模型的背景下,理解客户的想法不再是一种奢侈,而是一种必要性。客户反馈分析既是一门艺术,也是一门科学——一种从调查、评论、社交媒体和支持互动等多种来源中提取可操作见解的方法论。 在当今数字领域中,客户反馈比以往任何时候都更加丰富,企业不断寻求方法来利用这一财富。本文介绍了人工智能与客户反馈分析的融合,探讨了自然语言处理(NLP)和机器学习等技术如何提取可操作见解。我们揭示了人工智能在提高客户满意度和推动业务成功方面的转变潜力。让我们一起踏上这段启迪之旅,探索人工智能与优化客户体验之间的协同作用。 学习目标 人工智能基础:掌握基本的人工智能概念,包括自然语言处理和大型语言模型,以及它们与客户反馈分析的相关性。 人工智能应用:探索人工智能在调查、情感分析、反馈分类和自动化响应等方面的实际应用,突出其效率。 现实世界的影响:通过各种行业案例研究了解人工智能在改善客户体验方面的实际影响。 挑战和伦理:认识客户反馈分析中的人工智能挑战和伦理考虑,如数据质量和隐私。 战略性采用人工智能:学习如何战略性地利用人工智能获取竞争优势,在反馈分析中提高决策能力、客户关注度、效率、智能和创新。 本文是Data Science Blogathon的一部分。 理解人工智能:简要概述 人工智能(AI)是一项革命性的技术,旨在在机器和系统中复制类似人类的智能。这个简要概述提供了有关AI核心概念和功能的见解。 模仿人类智能 在本质上,人工智能旨在通过使机器能够从数据中学习、识别模式、做出决策和执行通常需要人类认知的任务来模拟人类智能。它通过算法和数据的结合来实现这一目标。 算法的作用 算法,或预定义的规则和指令集,构成了人工智能的基础。这些算法处理大量数据,识别相关性,并利用这些信息进行预测或决策。机器学习和深度学习是人工智能的子集,专注于通过对数据的迭代学习来提高算法性能。 数据作为燃料 数据是人工智能的命脉。人工智能系统可以访问的质量数据越多,其性能和准确性就越好。这些数据可以包括文本、图像、音频或任何其他形式的信息,人工智能系统被设计用来分析或处理这些信息。 人工智能的类型 人工智能可以分为两种主要类型:狭义或弱人工智能和广义或强人工智能。狭义人工智能专为语言翻译或图像识别等特定任务而设计,而广义人工智能具有类似人类智能的能力,可以执行各种类似人类认知的任务(尽管这种水平的人工智能在很大程度上仍然是理论性的)。 人工智能的应用 人工智能在医疗、金融、客户服务和自动驾驶等各个领域都有应用。它驱动着聊天机器人、推荐系统和GPT-3等大型语言模型。这些应用利用了人工智能分析数据、理解自然语言和做出明智决策的能力。 这个简要概述为我们展示了人工智能及其多面功能的迷人世界。当我们深入探索本文时,我们将看到人工智能在提高客户反馈分析中的关键作用。…

Leave a Comment

“大型语言模型(LLMs)调研”

介绍 技术进步的格局已经被大型语言模型(LLMs)的出现所彻底改变,这是人工智能创新分支的一个创新。这些模型以复杂的机器学习算法和大量的计算能力为驱动,代表了我们理解、生成和操纵人类语言能力的飞跃。LLMs展现出了解释微妙之处、构建连贯叙述甚至进行与人类交流相似的对话的非凡能力。当我们深入探索LLMs时,我们面临的是它们对各个行业、沟通范式和人机交互未来的深远影响。 然而,在这令人敬畏的潜力之中,存在着一个复杂的挑战网络。虽然LLMs在能力上有所承诺,但它们也不免受到偏见、伦理关切和潜在滥用的影响。这些模型从大量数据集中学习的能力引发了有关数据来源和可能存在的隐藏偏见的问题。此外,随着LLMs越来越多地融入我们的日常生活,隐私、安全和透明度问题变得至关重要。此外,围绕LLMs的内容生成和在决策过程中的作用的伦理考虑也需要仔细研究。 在这个探索LLMs领域的旅程中,我们将深入研究它们的功能复杂性、创新潜力、所带来的挑战以及指导其负责任发展的伦理框架。通过以思考的方式导航这些方面,我们可以利用LLMs的潜力,同时解决它们的局限性,最终塑造人类和机器在语言理解和生成方面和谐合作的未来。 学习目标 理解LLM基础知识:建立对大型语言模型(LLMs)的基础理解,包括它们的架构、组件和基本技术。了解LLMs如何处理和生成人类语言。 探索LLM应用:探索LLMs在各个行业中的多样化应用,从自然语言理解和内容生成到语言翻译和专家辅助。了解LLMs如何改变各个行业。 认识伦理考虑:深入研究围绕LLMs的伦理考虑,包括偏见、错误信息和隐私问题。学习如何应对这些挑战,确保LLMs的负责任和伦理使用。 分析LLM的影响:研究LLMs在沟通、教育和行业领域对社会和经济的影响。评估将LLMs整合到生活各个方面可能带来的潜在益处和挑战。 未来趋势和创新:探索LLMs的不断发展的格局,包括在对话能力、个性化体验和跨学科应用方面的预期进展。思考这些发展对技术和社会的影响。 实际应用:通过探索LLMs的实际用例,如内容创作、语言翻译和数据分析,应用你的知识。获得利用LLMs进行各种任务的实际经验。 本文是作为数据科学博客马拉松的一部分发表的。 语言模型的演变 语言模型的轨迹见证了近期显著进展的动态演变。在语言处理领域的这一进化之旅在大型语言模型(LLMs)的出现中达到了顶点,标志着自然语言处理(NLP)能力的一次范式转变。 旅程始于为后续创新铺平道路的基础语言模型。最初,语言模型的范围有限,难以捕捉人类语言的复杂性。随着技术的进步,这些模型的复杂性也在增加。早期的迭代版本采用基本语言规则和统计方法生成文本,尽管在上下文和连贯性方面存在限制。 然而,转换器的出现,一种神经网络架构,标志着一个重大的飞跃。转换器有助于理解整个句子和段落之间的上下文关系。这一突破为大型语言模型奠定了基础。这些模型,如GPT-3,拥有海量的参数,使它们能够处理和生成无与伦比的文本质量。 大型语言模型理解上下文并展现出与人类类似的文本生成能力。它们擅长把握复杂微妙之处,产生连贯、具有上下文相关的语言,可以媲美人类的创作能力。这些模型超越了简单的模仿,以惊人的熟练度从事翻译、摘要和创造性写作等任务。 LLMs的演变标志着语言洞察、机器学习进步和计算资源的重大飞跃的融合。这一轨迹还在继续展开,未来有望实现更为复杂的语言理解和生成能力。 探索大型语言模型 深入了解大型语言模型(LLM)的世界,让我们踏上了一段从一个基本问题开始的旅程:“第一个大型语言模型是什么?” 这个问题是打开LLM在自然语言处理(NLP)中深远影响和变革潜力的门户。 LLM的诞生对NLP是一次革命性的飞跃,它源于首个大型语言模型的出现。这个开创性的模型证明了不断提升语言处理能力的不懈追求。它标志着数据、计算能力和创新的神经网络架构的融合形成了一个巨大的成就。 这个开创性的模型打破了早期模型在捕捉上下文、连贯性和语言细节方面的限制。深度学习技术和大规模数据集的利用相结合,为性能带来了显著的飞跃。这个模型奠定了后续LLM的基础,展示了利用大量数据来增强语言理解和生成能力的潜力。 这个初始大型语言模型的影响在各种NLP应用中回响。它强调了自动化任务的可行性,这些任务曾经需要类似人类的语言能力。包括文本生成、翻译、情感分析和摘要等任务都得到了显著的改进。 大型语言模型的类型…

Leave a Comment

在您的本地机器上释放GenAI LLMs的潜力!

介绍 自从GenAI LLMs发布以来,我们已经开始以各种方式使用它们。最常见的方式是通过像OpenAI网站这样的网站使用ChatGPT或通过OpenAI的GPT3.5 API、Google的PaLM API或其他网站(如Hugging Face、Perplexity.ai)使用大型语言模型的API进行交互。 在所有这些方法中,我们的数据被发送到我们的计算机之外。它们可能容易受到网络攻击(尽管所有这些网站都保证最高的安全性,但我们不知道会发生什么)。有时,我们希望在本地运行这些大型语言模型,如果可能的话,对它们进行本地调整。在本文中,我们将介绍如何设置LLMs以在Oobabooga上本地运行。 学习目标 了解在本地系统上部署大型语言模型的重要性和挑战。 学习在本地创建运行大型语言模型的设置。 探索可以在给定的CPU、RAM和GPU Vram规格下运行的模型。 学习从Hugging Face下载任何大型语言模型以在本地使用。 检查如何为大型语言模型分配GPU内存以运行。 本文是作为数据科学博文马拉松的一部分发表的。 什么是Oobabooga? Oobabooga是一个用于大型语言模型的文本生成Web界面。Oobabooga是一个基于Gradio的Web UI。Gradio是一个被机器学习爱好者广泛使用的Python库,用于构建Web应用程序,Oobabooga就是使用这个库构建的。Oobabooga将所有在尝试在本地运行大型语言模型时需要设置的复杂事物都抽象出来。Oobabooga附带了许多扩展来集成其他功能。 使用Oobabooga,您可以提供来自Hugging Face的模型链接,它将下载模型,然后您可以立即开始推理模型。Oobabooga具有许多功能,并支持不同的模型后端,如GGML、GPTQ、exllama和llama.cpp版本。您甚至可以在LLM之上使用这个UI加载一个LoRA(低秩适应)。Oobabooga可以让您训练大型语言模型,创建聊天机器人/ LoRA。在本文中,我们将详细介绍使用Conda安装此软件。 设置环境 在本节中,我们将使用conda创建一个虚拟环境。所以,要创建一个新的环境,打开Anaconda Prompt并输入以下命令。…

Leave a Comment

构建和训练用于代码的大型语言模型:深入探究StarCoder

介绍 嗨,科技爱好者们!今天,我很兴奋地带你进入建立和训练大规模语言模型(LLMs)的迷人世界。我们将深入探讨一个令人惊叹的模型,名为StarCoder,它是BigCode项目的一部分——这是一个在AI和代码开发交叉领域的开放倡议。 在开始之前,我要感谢Hugging Face的机器学习工程师Loubna Ben Allal,她在“为代码构建大语言模型”上的数据小时会议上的演讲成为本文的基础。现在,请系好安全带,让我们探索这一前沿技术背后的魔力! 学习目标: 通过BigCode合作,强调透明和道德开发,掌握在编码AI中的开放和负责任的实践。 了解LLM训练的基本要点:数据选择、架构选择和高效并行,利用Megatron-LM等框架。 通过HumanEval等基准评估LLM,借助BigCode评估工具,实现有效的模型比较。 使用VS Code扩展等工具,实现LLM在开发环境中的实际集成,与道德的AI利用相一致。 释放大语言模型在代码中的力量 那么,关于这些大规模语言模型有什么热议呢?它们就像虚拟的编码巫师,可以完成代码片段、生成整个函数,甚至可以提供修复错误的见解——所有这些都是基于自然语言描述的。我们今天的主角,StarCoder,拥有惊人的155亿个参数,并展示了出色的代码完成能力和负责任的AI实践。 数据筛选和准备:成功的基石 好了,让我们谈谈秘密酱料——数据筛选。我们的旅程始于The Stack数据集,这是一个横跨300多种编程语言的GitHub代码的大规模汇编。然而,数量并不总是胜过质量。我们精选了86种相关的语言,优先考虑了流行度和包容性,同时删除了过时的语言。 但是这里有个问题:经过广泛的清理,我们最终只得到了约800GB的80种编程语言的代码。我们通过一种称为去重的过程来删除自动生成的文件和重复的内容,以确保模型不会记住重复的模式。这种做法注重数据集的质量而不是数量,并为有效训练铺平了道路。 标记化和元数据的训练:破解代码 接下来是标记化!我们将我们的干净文本数据转换为模型可以理解的数值输入。为了保留存储库和文件名等元数据,我们在每个代码片段的开头添加了特殊标记。这些元数据就像模型的路线图,指导它如何在不同的编程语言中生成代码片段。 我们还巧妙地处理了GitHub问题、git提交和Jupyter笔记本等内容。所有这些元素都被结构化为特殊标记,为模型提供上下文。这些元数据和格式化后来在模型的性能和微调中起到关键作用。 StarCoder的架构选择:创造新高度 StarCoder的架构是一个设计选择的杰作。我们追求速度和成本效益,因此选择了1550亿个参数,在实力和实用性之间取得了平衡。我们还采用了多查询注意力(MQA)技术,这种技术可以高效处理更大批量的数据,并在不损失质量的情况下加快推理时间。 但创新并没有止步于此。我们引入了大上下文长度,得益于巧妙的闪光注意力。这使我们能够扩展到8000个标记,保持效率和速度。如果你想知道双向上下文,我们找到了一种方法让StarCoder能够理解从左到右和从右到左的代码片段,提高了它的多功能性。 训练和评估:让StarCoder接受考验…

Leave a Comment

释放领域特定LLMs的潜力

介绍 大型语言模型(LLMs)已经改变了整个世界。特别是在人工智能社区中,这是一个巨大的飞跃。几年前,建立一个能够理解和回复任何文本的系统是不可想象的。然而,这些能力是以牺牲深度为代价的。通才型的LLMs是万能的,但却无所专精。对于需要深度和精确性的领域来说,如幻觉等缺陷可能是代价高昂的。这是否意味着医学、金融、工程、法律等领域永远无法享受到LLMs的好处?专家们已经开始构建专门针对这些领域的专用领域LLMs,利用了与自监督学习和RLHF相同的基本技术。本文探讨了专用领域LLMs及其产生更好结果的能力。 学习目标 在我们深入技术细节之前,让我们概述本文的学习目标: 了解大型语言模型(LLMs)的概念,了解它们的优势和好处。 了解流行通才型LLMs的局限性。 了解什么是专用领域LLMs以及它们如何帮助解决通才型LLMs的局限性。 探索构建专用领域语言模型的不同技术,并通过示例展示它们在法律、代码补全、金融和生物医学等领域的性能优势。 本文作为数据科学博文的一部分发表。 什么是LLMs? 大型语言模型(LLM)是一个包含数亿到数千亿个参数的人工智能系统,旨在理解和生成文本。训练过程涉及将模型暴露于来自互联网文本(包括书籍、文章、网站和其他书面材料)的许多句子,并教导它预测句子中的掩码词或后续词。通过这样做,模型学习了其训练文本中的统计模式和语言关系。它们可以用于各种任务,包括语言翻译、文本摘要、问答、内容生成等。自从Transformer被发明以来,已经构建和发布了无数个LLMs。最近流行的LLMs的一些例子包括Chat GPT、GPT-4、LLAMA和Stanford Alpaca,它们取得了突破性的性能。 LLMs的优势 LLMs已经成为语言理解、实体识别、语言生成等问题的首选解决方案。在GLUE、Super GLUE、SQuAD和BIG基准测试等标准评估数据集上取得的出色表现反映了这一成就。BERT、T5、GPT-3、PALM和GPT-4发布时都在这些标准测试中取得了最先进的结果。GPT-4在BAR和SAT等方面的得分超过了普通人。下图(图1)显示了大型语言模型出现以来在GLUE基准测试中的显著改进。 大型语言模型的另一个主要优势是其改进的多语言能力。例如,训练了104种语言的多语言BERT模型在不同语言上展现出了很好的零-shot和few-shot结果。此外,利用LLMs的成本变得相对较低。出现了一些低成本的方法,如提示设计和提示调整,可以确保工程师可以以较低的成本轻松利用现有的LLMs。因此,大型语言模型已成为基于语言的任务的默认选择,包括语言理解、实体识别、翻译等。 通才型LLMs的局限性 大多数流行的LLMs,如上述提到的那些,是训练于互联网文本、书籍、维基百科等各种文本资源的通才型LLMs。这些LLMs有多种应用,包括搜索助手(使用GPT-4的Bing Chat,使用PALM的BARD)、内容生成任务(如编写营销邮件、营销内容和销售演讲稿)以及问答任务(如个人聊天机器人、客户服务聊天机器人等)。 尽管通才型人工智能模型在理解和生成各种主题的文本方面表现出色,但它们有时需要更深入、更细致的专业领域知识。例如,“债券”是金融行业的一种借贷形式。然而,通用语言模型可能无法理解这个独特的短语,并将其与化学中的债券或两个人之间的债券混淆。相反,专门针对特定使用案例的LLMs对与特定行业相关的术语有专门的理解,能够正确解释行业特定的概念。 此外,通用语言模型(LLMs)存在多个隐私挑战。例如,在医学LLMs的情况下,患者数据非常重要,将此类机密数据暴露给通用LLMs可能会违反隐私协议,因为RLHF等技术的存在。另一方面,专业领域的LLMs采用封闭框架,以避免数据泄露。 同样,通用LLMs容易出现严重的幻觉问题,因为它们往往是为创意写作而量身定制的。而专业领域的LLMs在领域特定的基准测试中表现更加精确,并且性能显著更好,如下面的应用案例所示。 专业领域的LLMs 在特定领域的数据上训练的LLMs被称为专业领域的LLMs。领域这个术语可以涵盖从特定领域(如医学、金融等)到特定产品(如YouTube评论)的任何内容。专业领域的LLMs旨在在领域特定的基准测试上表现最佳;通用基准测试不再关键。构建专用语言模型的方法有多种。最常见的方法是将现有的LLMs进行微调以适应特定领域的数据。然而,对于追求在利基领域中达到最先进性能的用例来说,预训练才是正确的选择。…

Leave a Comment

大型语言模型微调的全面指南

介绍 在过去几年中,自然语言处理(NLP)领域发生了一场令人瞩目的变革,这完全归功于大型语言模型的出现。这些复杂的模型为各种应用打开了大门,从语言翻译到情感分析,甚至智能聊天机器人的创建。 但它们的多功能性使得这些模型与众不同;将它们微调以应对特定任务和领域已经成为标准做法,释放出它们的真正潜力,将其性能提升到新的高度。在这本全面的指南中,我们将深入探讨大型语言模型的微调世界,涵盖从基础知识到高级知识的一切。 学习目标 了解微调的概念和将大型语言模型调整适应特定任务的重要性。 探索多任务、指令微调和参数高效微调等高级微调技术。 获得实际应用的实用知识,微调的语言模型在其中革新行业。 了解大型语言模型微调的逐步过程。 实施完善的微调机制。 了解标准微调和指令微调之间的区别。 本文作为数据科学博文的一部分发表。 理解预训练语言模型 预训练语言模型是在互联网上获取的大量文本数据上进行训练的大型神经网络。训练过程包括预测给定句子或序列中缺失的单词或令牌,从而使模型对语法、上下文和语义有深刻的理解。通过处理数十亿个句子,这些模型可以把握语言的复杂性,有效捕捉其细微差别。 流行的预训练语言模型示例包括BERT(双向编码器表示转换)、GPT-3(生成式预训练转换器3)、RoBERTa(经过优化的鲁棒BERT预训练方法)等等。这些模型以其出色的性能在文本生成、情感分类和语言理解等任务上表现出色。 让我们详细讨论其中一个语言模型。 GPT-3 GPT-3(生成式预训练转换器3)是一种突破性的语言模型架构,改变了自然语言生成和理解。Transformer模型是GPT-3架构的基础,它包含了多个参数,以产生出色的性能。 GPT-3的架构 GPT-3由一系列Transformer编码器层组成。每个层由多头自注意力机制和前馈神经网络组成。前馈网络处理和转换编码表示,注意力机制使模型能够识别单词之间的依赖关系和关联。 GPT-3的主要创新是其巨大的规模,它拥有令人惊叹的1750亿个参数,使其能够捕捉到大量的语言知识。 代码实现 您可以使用OpenAI API与GPT-3模型进行交互。以下是使用GPT-3进行文本生成的示例。 import openai…

Leave a Comment

对话式人工智能中的LLM:构建更智能的聊天机器人和助手

介绍 语言模型在引人入胜的对话型人工智能领域中占据重要地位,该领域涉及技术和人类之间进行自然对话。最近,一种令人瞩目的突破性进展被称为大型语言模型(LLM)引起了大家的注意。像OpenAI令人印象深刻的GPT-3一样,LLM在理解和生成类似人类文本方面表现出了异常能力。这些令人难以置信的模型已成为一种改变游戏规则的技术,尤其在创建更智能的聊天机器人和虚拟助手方面。 在本博客中,我们将探讨LLM如何为对话型人工智能做出贡献,并提供易于理解的代码示例来展示它们的潜力。让我们深入研究一下,看看LLM如何使我们的虚拟互动更具吸引力和直观性。 学习目标 了解大型语言模型(LLM)的概念及其在推进对话型人工智能能力方面的重要性。 了解LLM如何使聊天机器人和虚拟助手能够理解和生成类似人类的文本。 探索提示工程在指导基于LLM的聊天机器人行为中的作用。 认识到LLM相对于传统方法在改进聊天机器人响应方面的优势。 发现LLM在对话型人工智能的实际应用。 本文是作为数据科学博客马拉松的一部分发表的。 理解对话型人工智能 对话型人工智能是人工智能创新领域,专注于开发能够以自然和类似人类的方式理解和回应人类语言的技术。通过使用自然语言处理和机器学习等先进技术,对话型人工智能赋予聊天机器人、虚拟助手和其他对话系统与用户进行动态和交互式对话的能力。这些智能系统可以理解用户的查询,提供相关信息,回答问题,甚至执行复杂任务。 对话型人工智能已经在客户服务、医疗保健、教育和娱乐等各个领域得到应用,彻底改变了人类与技术互动的方式,为更具共情和个性化的人机交互打开了新的前沿。 语言模型的演进:从基于规则的聊天机器人到LLM 在不久的过去,与聊天机器人和虚拟助手的互动往往感觉呆板和令人沮丧。这些基于规则的系统遵循严格预定义的脚本,依靠开发人员编程的特定关键字和响应。同时,它们提供了回答常见问题等基本功能。由于它们缺乏上下文理解,对话感觉僵硬和有限。 基于规则的聊天机器人时代 语言模型的历程始于基于规则的聊天机器人。这些早期聊天机器人基于预定义的规则和模式运行,依靠开发人员编程的特定关键字和响应。与此同时,它们提供了回答常见问题等基本功能。由于它们缺乏上下文理解,对话感觉僵硬和有限。 统计语言模型的兴起 随着技术的进步,统计语言模型进入了舞台。这些模型利用统计算法分析大量的文本数据集,并从数据中学习模式。采用这种方法,聊天机器人可以处理更广泛的输入范围,并提供稍微更具上下文相关的响应。然而,它们仍然难以捕捉人类语言的复杂性,经常导致不自然和脱节的响应。 基于Transformer模型的兴起 真正的突破发生在基于Transformer模型的出现时,尤其是革命性的GPT(Generative Pre-trained Transformer)系列。第三代GPT-3代表了对话型人工智能的一次重大变革。GPT-3在大量互联网文本的预训练基础上,利用深度学习和注意力机制的威力,使其能够理解上下文、语法、语法甚至类似人类的情感。 理解大型语言模型 具有复杂神经网络的LLM,由开创性的GPT-3(Generative…

Leave a Comment

谷歌DeepMind正在研发一种算法,以超越ChatGPT

在一项具有突破性的宣布中,Google的DeepMind AI实验室的首席执行官Demis Hassabis揭示了一种名为Gemini的创新型AI系统的开发。凭借即将推出的算法,Gemini将超越OpenAI的ChatGPT,利用DeepMind在围棋领域的历史性胜利中获得的技术。这一揭示标志着人工智能领域的一个重要里程碑,承诺提供增强的功能和新颖的进展。让我们深入探讨这一革命性的发展及其对人工智能未来的潜在影响。 Gemini:人工智能技术的下一个飞跃 DeepMind的创新性AI系统Gemini已经成为人工智能领域的一项创举。Gemini在AlphaGo的卓越成就基础上,将DeepMind的先进技术与GPT-4的语言能力相结合,超越了OpenAI的ChatGPT的能力。这种优势的融合使Gemini成为一种有前景的创新,有望重新定义人工智能领域。 合并优势:AlphaGo和GPT-4的协同作用 通过将AlphaGo的强大技术融入GPT-4模型中,Gemini超越了传统语言模型的局限性。Gemini独特的语言能力和问题解决能力的结合承诺革新人工智能。DeepMind的首席执行官Demis Hassabis设想了一个在理解和生成文本以及规划和解决复杂问题方面表现出色的系统。 还阅读:DeepMind首席执行官表示AGI可能很快实现 揭示创新:Gemini的令人兴奋的特点 Gemini将引入许多令人兴奋的功能,推动人工智能能力的边界。通过融合AlphaGo类型的系统和大型语言模型,Gemini带来了人工智能潜力的新时代。DeepMind的工程师还暗示了Gemini内部的一些有趣创新,进一步加剧了对其正式发布的期待。 强化学习:AlphaGo成功的基础 强化学习技术的突破性应用是AlphaGo历史性胜利的核心。DeepMind的软件通过多次尝试并根据表现获得反馈来掌握复杂问题。此外,AlphaGo还利用一种称为树搜索的方法,在棋盘上探索和记住潜在的走法。这一基础为Gemini的未来发展奠定了基础。 还阅读:强化学习的综合指南 正在进行的旅程:Gemini的开发 尽管Gemini仍处于开发阶段,但Hassabis强调了这个项目所涉及的巨大工作和投入。DeepMind的团队估计,将需要数个月和大量的财力资源(可能达到数千万或数亿美元)来实现Gemini的成功。这项工作的重要性凸显了Gemini潜在影响的重要性。 应对竞争:谷歌的战略回应 随着OpenAI的ChatGPT获得关注,谷歌迅速回应,将生成型人工智能整合到其产品中,推出聊天机器人Bard,并将人工智能纳入其搜索引擎。通过将DeepMind与谷歌的主要人工智能实验室Brain合并成为Google DeepMind,这家搜索巨头试图利用Gemini的能力应对ChatGPT所带来的竞争威胁。这一战略举措凸显了谷歌在人工智能创新领域保持领先地位的承诺。 还阅读:Chatgpt-4与Google Bard的对比 DeepMind的旅程:从收购到惊艳 DeepMind于2014年被谷歌收购,标志着人工智能研究的一个转折点。这家公司靠着强化学习驱动的革命性软件展示了以前难以想象的能力。AlphaGo在2016年对阵围棋冠军李世石的巨大胜利震惊了人工智能界,挑战了人们对于在复杂游戏中达到人类水平技能时间表的预设观念。 还阅读:DeepMind的AI大师:在2小时内学习26个游戏 Transformer训练:大型语言模型的支柱…

Leave a Comment

LangFlow | 使用LLMs开发应用程序的LangChain用户界面

介绍 大型语言模型席卷全球。随着ChatGPT、GPT3、Bard和其他大型语言模型的出现,开发人员不断使用这些模型来创建新的产品解决方案。每一天都会有一个新的大型语言模型或现有LLM的新版本。跟上这些新版本或新模型可能会有问题,因为人们必须阅读每个大型语言模型的文档。LangChain是一个包装所有不同LLM的库,使事情变得更容易。此外,基于LangChain的UI——LangFlow也被引入,可以直接与之交互和创建应用程序,使事情变得更好。 学习目标 了解LangFlow UI 安装和使用LangFlow 了解LangFlow的内部工作原理 使用LangFlow创建应用程序 通过LangFlow共享创建的应用程序 本文是Data Science Blogathon的一部分。 什么是LangFlow和为什么使用LangFlow? LangFlow是一个基于Python包LangChain和react-flow设计的图形用户界面(UI)。LangChain是一个用于创建大型语言模型应用程序的Python包。它由不同的组件组成,如代理、LLMs、链、内存和提示。开发人员将这些模块链在一起以创建应用程序。LangChain包含几乎所有流行的大型语言模型的包装器。现在,要使用LangChain,必须编写代码来创建应用程序。编写代码有时可能耗时甚至容易出错。 这就是LangFlow的作用。它是基于LangChain的图形用户界面(UI)。它包含LangChain中的所有组件。LangFlow提供了拖放功能,您可以将组件拖放到屏幕上并开始从大型语言模型构建应用程序。它甚至包含了丰富的示例供每个人开始使用。在本文中,我们将介绍这个UI,并看看如何使用它构建应用程序。 让我们从LangFlow开始 现在,我们已经了解了LangFlow是什么,以及它的作用,让我们深入了解其功能,以更好地理解其功能。LangFlow UI适用于JavaScript和Python。您可以选择其中一种并开始使用。对于Python版本,需要在系统中安装Python和LangChain库。 如果您想使用LangFlow,您需要安装以下软件包 pip install langchain pip install langflow…

Leave a Comment

改进数据分析:OpenAI、LangChain 和 LlamaIndex 为简单提取而设计

介绍 OpenAI的API由OpenAI开发,提供了今天最先进的语言模型之一。通过利用此API和使用LangChain&LlamaIndex,开发人员可以将这些模型的强大功能集成到自己的应用程序、产品或服务中。只需几行代码,您就可以利用OpenAI的语言模型的广泛知识和能力,开启令人兴奋的可能性世界。 OpenAI的语言模型的核心在于大型语言模型或简称LLM。LLM可以生成类似于人类的文本并理解复杂语言结构的上下文。通过在大量多样化的数据上进行训练,LLM已经获得了一种非凡的能力,能够理解和生成各种主题的上下文相关文本。 学习目标 在本文中,我们将探讨以下令人兴奋的可能性: 使用OpenAI的API结合LangChain和LlamaIndex轻松从多个PDF文档中提取有价值的信息。 如何格式化提示以提取不同数据结构中的值。 如何使用GPTSimpleVectorIndex进行高效的搜索和检索文档。 本文是Data Science Blogathon的一部分。 LlamaIndex和LangChain 使用这两个开源库构建利用大型语言模型(LLMs)的应用程序。 LlamaIndex提供了LLMs和外部数据源之间的简单接口,而LangChain提供了构建和管理LLM驱动应用程序的框架。尽管LlamaIndex和LangChain仍在开发中,但它们仍具有革命性的潜力,可以改变我们构建应用程序的方式。 所需库 首先,让我们安装必要的库并导入它们。 !pip install llama-index==0.5.6 !pip install langchain==0.0.148 !pip install PyPDF2…

Leave a Comment