Press "Enter" to skip to content

Tag: Healthcare and Life Sciences

“光环效应:人工智能深入探索珊瑚礁保护”

随着全球珊瑚礁的迅速衰退,夏威夷大学马诺阿分校的研究人员开创了一种基于人工智能的勘测工具,可以从天空监测珊瑚礁的健康状况。 利用由NVIDIA GPU提供动力的深度学习模型和高分辨率卫星图像,研究人员开发出一种新的方法,可以发现和追踪珊瑚礁光环——围绕珊瑚礁的一圈贫瘠沙地。 这项研究最近发表在《遥感环境》杂志上,可能为实时珊瑚礁监测和全球保护工作带来转机。 “珊瑚礁光环可能是生态系统健康的潜在指标,”夏威夷大学的博士后研究员阿梅利亚·迈尔说道,她也是这项研究的合著者。“这些光环模式可以从太空中看到,为科学家和保护人士提供了观察广阔而遥远地区的独特机会。借助人工智能,我们可以定期评估光环的存在和大小,以确定生态系统的健康状况。” 明晰海洋:揭示珊瑚礁健康 根据研究人员最近的发现,以前认为仅由鱼类觅食造成的珊瑚礁光环也可以指示一个健康的捕食者-被捕食者生态系统。一些食草鱼类在保护珊瑚礁周边的海藻或海草上觅食,而捕食者则在海底挖掘寄生无脊椎动物,使周围的沙地裸露。 这些动态表明该区域为维持多样化的海洋生物种群提供了丰富的食物资源。当光环的形状发生变化时,表明海洋食物链存在失衡,可能指示一个不健康的珊瑚礁环境。 身陷困境 虽然珊瑚礁在海洋中仅占不到1%,但它们为超过100万种水生物种提供了栖息地、食物和育种场所。这也具有巨大的商业价值——每年约有3750亿美元的商业捕捞、旅游和沿海风暴保护,以及为药物研发研究提供抗病毒化合物。 然而,过度捕捞、养分污染和海洋酸化威胁着珊瑚礁的健康。加剧的气候变化以及来自变暖海洋的热应激也会加剧珊瑚白化和传染病的发生。 全球超过一半的珊瑚礁已经消失或严重受损,科学家预测到2050年所有的珊瑚礁都将面临威胁,其中很多处于危险之中。 借助人工智能开创新的视野 发现珊瑚礁光环的变化对于全球保护工作至关重要。然而,追踪这些变化是一项耗时且需要大量人力的任务,限制了研究人员每年进行的勘测数量。偏远地区珊瑚礁的可及性也带来了挑战。 研究人员创建了一个人工智能工具,可以从全球卫星图像中识别和测量珊瑚礁光环,使保护人士有机会主动应对珊瑚礁退化问题。 他们使用Planet SkySat图像,开发了一个双模型框架,采用了两种类型的卷积神经网络(CNNs)。依靠图像分割的计算机视觉方法,他们训练了一个Mask R-CNN模型,逐像素检测珊瑚礁和光环的边缘。一个U-Net模型则被训练用于区分珊瑚礁和光环的区域,并进行分类和预测。 研究区域概述(A),包含光环的SkySat卫星图像示例(B)以及光环的放大子集(C)。 团队使用TensorFlow、Keras和PyTorch库对珊瑚礁模型进行了数千个注释的训练和测试。 为了应对任务的大量计算需求,CNNs在一台NVIDIA RTX A6000 GPU上运行,借助cuDNN加速的PyTorch框架。研究人员通过NVIDIA学术硬件赠款计划获得了A6000 GPU。…

Leave a Comment

AI推动的生产力:生成式AI开启了跨行业效率的新时代

2022年11月22日是一个具有里程碑意义的时刻,虽然大部分是虚拟的,但它震动了全球几乎每个行业的基础。 在那天,OpenAI发布了ChatGPT,这是迄今为止最先进的人工智能聊天机器人。这引发了对生成式人工智能应用的需求,这些应用帮助企业更高效地工作,从为消费者提供问题的答案,到加速研究人员在寻求科学突破时的工作,以及更多其他方面。 之前只是尝试过人工智能的企业现在正急于采用和部署最新的应用。生成式人工智能——算法创造新的文本、图像、声音、动画、3D模型甚至计算机代码的能力——正在以超光速发展,改变人们工作和娱乐的方式。 通过使用大型语言模型(LLMs)处理查询,这项技术可以大大减少人们用于搜索和整理信息等手动任务的时间。 利益巨大。据普华永道估计,到2030年,人工智能可能为全球经济贡献超过15万亿美元。而人工智能的采用影响可能超过互联网、移动宽带和智能手机的发明——总和超过。 推动生成式人工智能的引擎是加速计算。它使用GPU、DPU和网络以及CPU,加速应用程序在科学、分析、工程以及消费者和企业用例中的应用。 从药物发现、金融服务、零售和电信到能源、高等教育和公共部门的早期采用者,正在将加速计算与生成式人工智能结合起来,改变业务运营、服务提供和生产力。 点击查看信息图表:生成下一波人工智能转型 药物发现的生成式人工智能 今天,放射科医生使用人工智能来检测医学影像中的异常,医生使用它来扫描电子健康记录以发现患者洞察,研究人员使用它来加速新药的发现。 传统的药物发现是一个资源密集型的过程,可能需要合成5000多种化合物,平均成功率仅为10%。大多数新药候选品要花费十多年的时间才能上市。 研究人员现在使用生成式人工智能模型读取蛋白质的氨基酸序列,并能够在几秒钟内准确预测目标蛋白的结构,而不是几周或几个月。 使用NVIDIA BioNeMo模型,全球生物技术领导者Amgen将为分子筛选和优化定制模型的时间从三个月缩短到几周。这种可训练的基础模型使科学家能够为研究特定疾病创建变体,使他们能够开发针对罕见疾病的靶向治疗。 无论是预测蛋白质结构还是在大型真实世界和合成数据集上安全训练算法,生成式人工智能和加速计算正在开辟研究的新领域,有助于减轻疾病的传播、实现个性化医疗治疗和提高患者的生存率。 金融服务的生成式人工智能 根据最近的一项NVIDIA调查,金融服务行业中的顶级人工智能应用案例是客户服务和深度分析,其中自然语言处理和LLMs用于更好地回答客户的问题并发现投资见解。另一个常见的应用是推荐系统,它们提供个性化的银行体验、优化营销和投资指导。 先进的人工智能应用有助于帮助该行业更好地预防欺诈,并改变银行的方方面面,从投资组合规划和风险管理到合规和自动化。 80%的业务相关信息是以非结构化格式——主要是文本——存在的,这使其成为生成式人工智能的首选。彭博新闻每天发布与金融和投资社区相关的5000篇报道。这些报道代表了一大批非结构化的市场数据,可以用于进行及时的投资决策。 NVIDIA、德意志银行、彭博社和其他机构正在创建基于领域特定和专有数据的LLMs,用于支持金融应用。 财务变形器,或称“FinFormers”,可以学习上下文并理解非结构化金融数据的含义。它们可以驱动问答聊天机器人,概述和翻译金融文本,提供反对方风险的早期预警,快速检索数据并识别数据质量问题。 这些生成式人工智能工具依赖于能够将专有数据集成到模型训练和微调中的框架,集成数据策划以防止偏见,并使用安全措施保持与金融相关的对话。 预计金融科技初创企业和大型国际银行将扩大他们对LLMs和生成式人工智能的应用,开发复杂的虚拟助手为内部和外部利益相关者提供服务,创建超个性化的客户内容,自动化文档摘要以减少手动工作,并分析公共和私人数据的TB级数据以生成投资见解。 零售业的生成式人工智能 随着60%的购物旅程从线上开始,消费者比以往任何时候都更加联网和知识丰富,人工智能已成为帮助零售商满足不断变化的期望并与日益激烈的竞争区分开来的重要工具。…

Leave a Comment

NYU与NVIDIA合作开发大型语言模型以预测患者再次住院

从医院出院对于患者来说是一个重要的里程碑,但有时,这并不意味着他们的康复之路已经结束。在美国,近15%的住院患者在初始出院后的30天内再次入院,这通常与患者和医院都面临更糟糕的结果和更高的成本有关。 纽约大学(New York University)的医学中心纽约大学朗格尼医疗中心(NYU Langone Health)的研究人员与英伟达专家合作,开发了一个大型语言模型(LLM),可以预测患者未来30天内再次入院的风险,以及其他临床结果。 在该医疗系统的6个住院设施中部署的NYUTron模型——今天在科学杂志《自然》上亮相——为医生提供了人工智能驱动的洞见,可以帮助他们识别需要临床干预以减少再入院风险的患者。 “当你从医院出院时,你不希望他们需要返回,否则你可能应该让他们在医院里待更长时间,”NYU Grossman School of Medicine的放射学和神经外科助理教授Eric Oermann博士说,并且他是NYUTron的主要合作者之一。“使用AI模型的分析,我们可以很快赋予临床医生防止或修复使患者再次入院风险增加的情况的能力。” 到目前为止,该模型已经应用于纽约大学医疗系统中超过50,000名患者,通过电子邮件通知与医生共享再入院风险的预测结果。Oermann的团队接下来计划进行一项临床试验,以测试基于NYUTron的分析是否能够降低再入院率。 解决快速再入院等威胁 美国政府跟踪30天再入院率作为医院提供的医疗质量的指标。具有高再入院率的医疗机构将受到罚款,这种监管程度促使医院改善其出院流程。 有很多原因使最近出院的患者可能需要再次入院,其中包括感染、抗生素过度开药、手术引流管早期拆除等。如果这些风险因素能够更早地被发现,医生可以通过调整治疗计划或在医院内对患者进行更长时间的监测来进行干预。 “虽然自1980年代以来就有计算模型来预测患者再入院,但我们将其视为一项自然语言处理任务,需要具有临床文本的健康系统规模语料库,”Oermann说。“我们训练了LLM,让它在电子健康记录的非结构化数据上进行学习,以查看它是否能够捕捉到人们之前未考虑的见解。” NYUTron是在纽约大学朗格尼医疗中心的10年健康记录上进行预训练的LLM:超过40亿字的临床笔记,代表近40万名患者。该模型的准确性比预测再入院的最先进机器学习模型提高了10%以上。 在LLM针对30天再入院的初始使用案例进行了训练后,该团队能够在大约一周内推出其他四种预测算法。这些算法包括预测患者住院时间的长度、住院期间死亡的可能性以及患者保险理赔被拒绝的机会。 “经营医院在某些方面就像管理酒店,”Oermann说。“帮助医院更有效地运营的见解意味着有更多病床和更好的护理服务,可以为更多的患者提供帮助。” 从训练到部署的LLM NYUTron是一个具有数亿参数的LLM,使用NVIDIA NeMo Megatron框架在大型NVIDIA…

Leave a Comment