介绍 在人工智能不断发展的领域中,两个关键角色联手合作,打开了新的局面:生成式人工智能和强化学习。这些尖端技术有潜力创造自我改进的人工智能系统,使我们离实现机器自主学习和适应的梦想更近了一步。这些工具为能够改进自己的人工智能系统铺平了道路,使得机器能够自主学习和自适应的想法更加接近。 近年来,人工智能在理解人类语言、帮助计算机观察和解释周围世界方面取得了巨大成就。像GPT-3这样的生成式人工智能模型和Deep Q-Networks这样的强化学习算法站在这一进展的前沿。尽管这些技术在单独使用时已经具有了革命性的影响力,但它们的融合打开了人工智能能力的新维度,并将世界的边界推向了更舒适的境地。 学习目标 获取关于强化学习及其算法、奖励结构、强化学习的一般框架和状态-动作策略的必要和深入的知识,以了解代理机构如何做出决策。 探索这两个领域如何共生地结合在一起,以在决策情景中创建更具适应性和智能性的系统。 研究和分析各种案例研究,展示将生成式人工智能与强化学习在医疗保健、自主车辆和内容创作等领域进行整合的有效性和适应性。 熟悉Python库,如TensorFlow、PyTorch、OpenAI’s Gym和Google’s TF-Agents,以在实施这些技术时获得实际的编程经验。 本文作为数据科学博文马拉松的一部分发表。 生成式人工智能:赋予机器创造力 生成式人工智能模型,如OpenAI的GPT-3,旨在生成内容,无论是自然语言、图像还是音乐。这些模型的工作原理是预测在给定上下文中接下来会发生什么。它们已经被用于自动化内容生成和能够模仿人类对话的聊天机器人等方面。生成式人工智能的特点是能够从学习到的模式中创造出新的东西。 强化学习:教会人工智能做出决策 来源–Analytics Vidhya 强化学习(RL)是另一个开创性的领域。它是让人工智能像人类一样通过试错学习的技术。它已经被用于教授人工智能玩复杂的游戏,如Dota 2和围棋。强化学习代理通过接收行为的奖励或惩罚来学习,并利用这些反馈来不断改进。从某种意义上讲,强化学习使人工智能获得了一种自治形式,使其能够在动态环境中做出决策。 强化学习的框架 在本节中,我们将揭示强化学习的关键框架: 行为实体:代理机构 在人工智能和机器学习领域,术语“代理机构”指的是任务是与指定的外部环境进行交互的计算模型。它的主要角色是做出决策和采取行动,以实现既定目标或在一系列步骤中累积最大奖励。 周围的世界:环境 “环境”指的是代理人操作的外部背景或系统。实质上,它构成了超出代理人控制范围但可以观察到的每一个因素。这可以是虚拟游戏界面,也可以是机器人在迷宫中导航的现实世界环境。环境是评估代理人表现的“真实基准”。…
Leave a CommentTag: decision
介绍 从人类因素/反馈中进行强化学习(RLHF)是一个新兴领域,它将RL的原则与人类反馈相结合。它将被设计用于优化决策和增强实际复杂系统的性能。高性能的RLHF侧重于通过利用计算模型和数据驱动方法来改善各个领域的设计、易用性和安全性,从而理解人类行为、认知、环境、知识和互动。 RLHF旨在通过将RL算法与人类因素原则结合起来,弥合以机器为中心的优化和以人为中心的设计之间的差距。研究人员试图创建适应人类需求、喜好和能力的智能系统,最终增强用户体验。在RLHF中,计算模型模拟、预测和指导人类反应,使研究人员能够洞察个体如何做出明智决策并与复杂环境互动。想象一下将这些模型与强化学习算法相结合!RLHF旨在优化决策过程,提高系统性能,并在未来几年增强人机协作。 学习目标 了解RLHF的基本原理及其在以人为中心的设计中的重要性是第一步。 探索在各个领域中优化决策和性能的RLHF应用。 识别与RLHF相关的关键主题,包括强化学习、人类因素工程和自适应界面。 认识知识图在促进数据整合和洞察RLHF研究和应用中的作用。 RLHF:革新以人为中心的领域 以人类因素为基础的强化学习(RLHF)有潜力改变人类因素至关重要的各个领域。它利用对人类认知限制、行为和互动的理解,创建了适应性界面、决策支持系统和个性化辅助技术,从而提高效率、安全性和用户满意度,促进了全行业的采用。 在RLHF的持续发展中,研究人员正在探索新的应用,并解决将人类因素整合到强化学习算法中的挑战。通过结合计算模型、数据驱动方法和以人为中心的设计,RLHF为先进的人机协作和优化决策、提高性能的智能系统铺平了道路,适用于各种复杂的实际场景。 为什么选择RLHF? RLHF对于医疗保健、金融、交通、游戏、机器人技术、供应链、客户服务等各个行业都非常有价值。RLHF使得AI系统能够以更符合人类意图和需求的方式学习,使得在各种实际应用案例和复杂挑战中,使用起来更加舒适、安全和有效。 RLHF的价值在哪里? 使AI在复杂环境中发挥作用是RLHF的能力,在许多行业中,AI系统操作的环境通常是复杂且难以准确建模的。而RLHF允许AI系统从人类因素中学习,并适应这些复杂情景,传统方法在效率和准确性方面无法满足。 RLHF促进负责任的AI行为,以与人类价值观、道德和安全一致。对这些系统的持续人类反馈有助于防止不良行为。另一方面,RLHF通过纳入人类因素、判断、优先级和偏好的方式,提供了指导代理学习过程的替代方法。 提高效率并降低成本在某些场景下,需要通过使用知识图或训练AI系统进行大量的试错。在特定情况下,这两种方法都可以在动态环境中快速采用。 实时适应的RPA和自动化在大多数行业中,已经使用了RPA或一些自动化系统,这些系统要求AI代理在快速变化的情况下迅速适应。RLHF通过人类反馈帮助这些代理实时学习,提高性能和准确性,即使在不确定的情况下也能做到。我们将这称为“决策智能系统”,RDF(资源开发框架)甚至可以将语义Web信息带入同一系统,有助于做出明智的决策。 数字化专业知识:在每个行业领域,专业知识都是至关重要的。借助RLHF的帮助,AI系统可以从专家知识中学习。同样,知识图和RDF允许我们将这些来自专家演示、流程、解决问题的事实和判断能力的知识数字化。RLHF甚至可以有效地将知识传递给代理。 根据需求进行定制:持续改进是AI系统通常在实际场景中运行的重要考虑因素之一,它们可以从用户和专业人士那里获得持续的反馈,使得AI能够根据反馈和决策不断改进。 RLHF的工作原理 RLHF通过将人类知识与强化学习技术相结合,填补了机器学习和人类专业知识之间的差距,使得AI系统在准确性和效率上更易于采用。 人类反馈强化学习(RLHF)是一种机器学习方法,通过将人类提供的反馈融入学习过程中,提高了AI智能体的训练效果。RLHF解决了传统强化学习在模糊的奖励信号、复杂的环境或需要将AI行为与人类价值观保持一致的挑战。 在RLHF中,AI智能体与环境进行交互并接收奖励反馈。然而,这些奖励可能不足、噪声干扰或难以准确定义。人类反馈对于有效引导智能体的学习至关重要。这种反馈可以采用不同的形式,例如明确的奖励、期望行为的演示、比较、排名或定性评估。 智能体通过调整其策略、奖励函数或内部表示来将人类反馈融入学习过程中。反馈和学习的融合使得智能体能够改进其行为、从人类专业知识中学习并与期望的结果保持一致。挑战在于在保持人类偏好的前提下,平衡探索(尝试新动作)和利用(选择已知动作)以有效学习。…
Leave a Comment