Press "Enter" to skip to content

Tag: dataset

“用GPT-4打造个性化的人工智能交易顾问”

介绍 近年来,将人工智能(AI)整合到股票交易中已经改变了投资者的决策方式。随着大型语言模型(LLMs)如GPT-3和GPT-4的出现,发生了一场范式转变,使个人投资者和交易者更容易获得复杂的市场分析和见解。这种革命性的技术利用大量的数据和复杂的算法,提供了以前仅由机构投资者独占的市场理解深度。本文重点介绍使用LLMs开发个性化AI交易顾问,旨在根据风险偏好、投资时间、预算和期望回报来匹配个人投资者的投资配置,为零售投资者提供个性化、战略性的投资建议。 由GPT-3和GPT-4等大型语言模型(LLMs)驱动的股票交易顾问已经彻底改变了金融咨询服务。它们可以利用人工智能来分析历史股票数据和当前的财经新闻,为投资者提供与其独特投资组合和财务目标相符合的个性化投资建议。我们将尝试构建一个顾问来预测市场行为和趋势,根据个人风险承受能力、投资期限、可用资本和期望回报提供量身定制的建议。 学习目标 通过本文,读者将能够: 了解AI和像GPT-3这样的LLMs如何改变股市分析和交易。 认识到基于个人风险偏好和投资目标的AI驱动工具提供个性化投资建议的能力。 了解AI如何利用历史和实时数据制定投资策略和预测。 了解股票交易中的AI如何使复杂的投资策略对更广泛的受众(包括零售投资者)可行。 发现如何利用AI驱动的工具进行个人投资和股票交易决策。 了解利用LLMs构建股票交易顾问的概念。 本文作为数据科学博文马拉松的一部分进行发布。 关于数据集 该项目的数据集从纽约证券交易所获取,并在Kaggle上提供,包括覆盖七年的四个CSV文件。其中包括关键的财务指标“fundamentals.csv”,提供历史股价和股票分割调整的“prices.csv”和“prices-split-adjusted.csv”,以及提供附加公司信息(如部门分类和总部)的“securities.csv”。这些文件的综合提供了对公司业绩和股票市场动态的全面了解。 数据准备 使用类似GPT-4这样的大型语言模型(LLMs)来实现股票交易顾问,需要进行关键的数据准备。这个过程包括重要的任务:数据清洗、归一化和分类,使用提供的数据集:fundamentals.csv、prices.csv、prices-split-adjusted.csv和securities.csv。 步骤1:数据清洗 在“基本数据集”中,我们使用中值插补来处理“For Year”、“Earnings Per Share”和“Estimated Shares Outstanding”的缺失值(173个、219个和219个缺失值)。 我们将“Period Ending”列转换为日期时间格式,使其适合进行数字字段分析。…

Leave a Comment

2023年的训练-测试-验证分割的综合指南

简介 有监督学习的目标是构建一个在一组新数据上表现良好的模型。问题在于您可能没有新数据,但您仍然可以通过像训练-测试-验证分割的过程来体验到这一点。 看到模型在数据集上的表现是不是很有趣?是的!专注工作的最好一面就是看到您的努力以一种良好的方式被充分利用,以创建一个高效的机器学习模型并产生有效的结果。 什么是训练-测试-验证分割? 训练-测试-验证分割在机器学习和数据分析中非常基础,尤其在模型开发过程中。它涉及将数据集分成三个子集:训练集、测试集和验证集。训练-测试分割是一个模型验证过程,可以检查您的模型在新数据集上的表现。 训练-测试-验证分割有助于评估机器学习模型在新的未见数据上的泛化能力。它还可以防止过拟合,即模型在训练数据上表现良好,但无法泛化到新实例。通过使用验证集,实践者可以迭代地调整模型的参数,以在未见数据上获得更好的性能。 数据分割在机器学习中的重要性 数据分割涉及将数据集分成训练、验证和测试子集。数据分割在机器学习中的重要性涵盖以下几个方面: 训练、验证和测试 数据分割将数据集分成三个主要子集:训练集用于训练模型,验证集用于跟踪模型参数并避免过拟合,测试集用于检查模型在新数据上的表现。每个子集都在机器学习模型开发的迭代过程中发挥着独特的作用。 模型开发和调优 在模型开发阶段,训练集对于将算法暴露于数据中的各种模式是必要的。模型从这个子集中学习,调整其参数以最小化错误。验证集在超参数跟踪过程中很重要,有助于优化模型的配置。 过拟合预防 过拟合发生在模型在训练数据上很好地学习到了噪声和无关模式的情况下。验证集充当检查点,可以检测到过拟合的情况。通过评估模型在不同数据集上的性能,您可以调整模型的复杂性、技术或其他超参数,以防止过拟合并增强泛化能力。 性能评估 测试集对于机器学习模型的性能至关重要。在训练和验证后,模型面对测试集,检查真实世界的情况。在测试集上表现良好的模型表明它已成功适应了新的未见数据。这一步骤对于在实际应用中部署模型时获得信心非常重要。 偏差和方差评估 训练-测试-验证分割有助于理解偏差折衷。训练集提供了关于模型偏差的信息,捕捉了内在模式,而验证和测试集有助于评估方差,指示了模型对数据集中波动的敏感性。在偏差和方差之间取得适当的平衡对于实现在不同数据集上良好泛化的模型至关重要。 交叉验证提高稳健性 除了简单的训练-验证-测试分割外,像k折交叉验证这样的技术进一步增强了模型的稳健性。交叉验证涉及将数据集分成k个子集,在k-1个子集上训练模型,并在剩余一个子集上验证。这个过程重复k次,并对结果进行平均。交叉验证更全面地了解模型在数据的不同子集上的性能。 数据分割在模型性能中的重要性 数据分割在模型性能中的重要性包括以下几个方面: 模型泛化能力的评估 模型不仅应该记住训练数据,还应有很好的泛化能力。数据分割可以创建一个测试集,对模型在新数据上的表现进行真实世界的检验。如果没有专门的测试集,当模型过度适应训练数据时,过拟合的风险会增加。数据分割通过评估模型的真实泛化能力来减轻这种风险。 防止过拟合…

Leave a Comment

MLOps 使用实施欺诈交易检测

介绍 在当今数字化的世界中,人们越来越倾向于通过在线交易和数字支付来进行交易,而不是使用现金,这是因为它的便利性。随着过渡的增加,欺诈行为也在增加。欺诈交易可以是任何类型,因为它涉及使用虚假身份或虚假信息要求钱款。这给个人和金融机构带来了重大问题。在这个项目中,我们将使用信用卡数据集来设计使用Airflow工具监控实时交易并预测其是否真实或欺诈的MLOPs模型。 学习目标 检测欺诈交易的重要性。 清理数据,转换数据集和预处理数据。 对数据集进行可视化分析以获得洞察力。 在数据科学中使用欺诈交易检测模型的实际应用。 使用Python编程语言进行欺诈交易数据分析 使用MS Azure和Airflow构建端到端的欺诈检测 本文作为数据科学博文马拉松的一部分发布。 什么是欺诈交易估计模型? 欺诈交易数据集包含来自不同来源的数据,其中包含交易时间、姓名、金额、性别、类别等列。欺诈交易估计模型是一个用于预测虚假交易的机器学习模型。该模型是在大量有效交易和欺诈交易的基础上进行训练的,以预测新的虚假交易。 什么是欺诈交易分析? 欺诈交易分析是分析过去数据集的过程。数据集分析旨在发现数据中的异常情况并找出数据集中的模式。欺诈交易分析在保护客户和减少财务损失方面起着关键作用。有不同类型的欺诈交易分析,例如基于规则的分析和异常检测。 基于规则的分析:基于规则的分析涉及创建规则来标记无效交易。例如,可以根据地理区域制定规则。 异常检测:异常检测涉及发现异常或异常的交易。例如,从新的IP地址进行的交易。 检测欺诈交易的重要性 对于企业和金融机构来说,检测欺诈交易对于保护客户免受欺诈和保护他们的资金至关重要。以下是检测欺诈交易的一些关键原因。 减少财务损失:欺诈交易给企业带来巨额财务损失,从而减少它们的利润。因此,企业检测欺诈交易变得至关重要。 维护声誉:维护声誉对于企业来说是至关重要的,因为它会导致潜在客户和顾客的流失。 保护客户和企业:欺诈交易可能对客户造成财务损失和情感影响。通过检测欺诈交易,企业可以保护客户和他们的业务。 数据收集和预处理 数据收集和预处理是开发欺诈检测模型的重要部分。一旦收集到数据,需要对数据集执行多个步骤。 数据清理:数据清理包括删除不需要的数据,例如重复数据,并填充缺失的数据值。…

Leave a Comment

在数据科学中使用MLOps实施基于需求的酒店房间定价

介绍 在Covid期间,酒店业的收入大幅下降。因此,当人们开始更多地旅行时,吸引顾客仍然是一个挑战。我们将开发一种机器学习工具来解决这个问题,并设置试衣间以吸引更多顾客。利用酒店的数据集,我们将建立一个人工智能工具来选择正确的房价,提高入住率,增加酒店的收入。 学习目标 设置酒店房间正确价格的重要性。 清洗数据,转换数据集和预处理数据集。 使用酒店预订数据创建地图和可视化图表。 数据科学中使用酒店预订数据分析的实际应用。 使用Python编程语言进行酒店预订数据分析。 本文作为数据科学博客马拉松的一部分发表。 什么是酒店房价数据集? 酒店预订数据集包含来自不同来源的数据,包括酒店类型、成人数量、停留时间、特殊要求等列。这些值可以帮助预测酒店房价,从而增加酒店的收入。 酒店房价分析是什么? 在酒店房价分析中,我们将分析数据集的模式和趋势。根据这些信息,我们将进行与定价和运营相关的决策。这些决策将受到多个因素的影响。 季节性:房价在旺季(如假期)大幅上涨。 需求:当需求高时(如庆典活动或体育赛事),房价会上涨。 竞争:酒店房价受附近酒店价格的影响很大。如果一个地区的酒店数量过多,则房价会降低。 设施:如果酒店有游泳池、水疗中心和健身房等设施,它们会对这些设施收取更高的费用。 位置:位于主要城镇的酒店相比较而言可以收费更高。 正确设置酒店房价的重要性 设置房价对于增加收入和利润至关重要。正确设置酒店房价的重要性如下: 最大化收入:房价是增加收入的主要关键。通过设置有竞争力的价格,酒店可以增加收入。 增加客户:当房价公平时,更多客人会预订酒店。这有助于增加入住率。 最大化利润:酒店试图提高价格以增加利润。然而,提高价格会减少客人数量,而正确设置价格会增加客人数量。 收集数据和预处理 数据收集和预处理是酒店房价分析的重要部分。数据是从酒店网站、预订网站和公共数据集收集的。然后将该数据集转换为可视化所需的格式。在预处理过程中,数据集经历数据清洗和转换。新转换的数据集用于可视化和模型构建。…

Leave a Comment

“文本转语音 – 训练您的大型语言模型”

介绍 想象一个世界,人工智能可以接受音乐家的语音指令,并将其转化为美妙的、旋律优美的吉他声音。这不是科幻小说,而是源自于开源社区“AI之声”的突破性研究。在本文中,我们将探讨在生成式人工智能吉他声音的“文本到声音”领域创建大型语言模型(LLM)的旅程。我们将讨论所面临的挑战以及为实现这个愿景所开发的创新解决方案。 学习目标: 了解在“文本到声音”领域创建大型语言模型的挑战和创新解决方案。 探索在开发基于语音指令生成吉他声音的人工智能模型时面临的主要挑战。 深入了解使用ChatGPT和QLoRA模型等人工智能进展改进生成式人工智能的未来方法。 问题陈述:音乐家的意图识别 问题是使人工智能能够根据音乐家的语音指令生成吉他声音。例如,当音乐家说“给我你明亮的吉他声音”时,生成式人工智能模型应该理解意图并产生明亮的吉他声音。这需要上下文和领域特定的理解,因为像“明亮”这样的词在一般语言中有不同的含义,但在音乐领域代表特定的音色质量。 数据集挑战和解决方案 训练大型语言模型的第一步是拥有与模型的输入和期望输出相匹配的数据集。在确定正确的数据集以训练我们的LLM以理解音乐家的指令并以正确的吉他声音作出回应时,我们遇到了几个问题。以下是我们如何处理这些问题。 挑战1:吉他音乐领域数据集准备 一个重大的挑战是缺乏特定于吉他音乐的可用数据集。为了克服这个问题,团队不得不创建自己的数据集。这个数据集需要包括音乐家之间讨论吉他声音的对话,以提供上下文。他们利用了Reddit的讨论等资源,但发现需要扩大这个数据池。他们采用了数据增强、使用BiLSTM深度学习模型和生成基于上下文的增强数据集等技术。 挑战2:数据注释和创建标记数据集 第二个挑战是对数据进行注释以创建一个带有标签的数据集。像ChatGPT这样的大型语言模型通常在通用数据集上进行训练,需要对特定领域的任务进行微调。例如,“明亮”可以指光线或音乐质量。团队使用了一种名为Doccano的注释工具,教会模型正确的上下文。音乐家为乐器和音色质量给数据打上了标签。由于需要领域专业知识,注释工作具有挑战性,但团队通过应用主动学习方法对数据进行自动标注来部分解决了这个问题。 挑战3:建模作为机器学习任务-命名实体识别(NER)方法 确定正确的建模方法是另一个障碍。它应该被视为识别主题还是实体?团队确定了命名实体识别(NER)方法,因为它使模型能够识别和提取与音乐相关的实体。他们采用了spaCy的自然语言处理流水线,利用了HuggingFace的RoBERTa等转换器模型。这种方法使生成式人工智能能够在音乐领域中识别像“明亮”和“吉他”这样的词的上下文,而不是它们的一般含义。 模型训练的挑战和解决方案 模型训练对于开发有效和准确的人工智能和机器学习模型至关重要。然而,它通常会带来一些挑战。在我们的项目背景下,当我们训练我们的转换器模型时,我们遇到了一些独特的挑战,我们不得不找到创新的解决方案来克服这些挑战。 过拟合和内存问题 在模型训练过程中,我们遇到的主要挑战之一是过拟合。过拟合是指模型过于专注于拟合训练数据,导致在未见或真实世界数据上表现不佳。由于我们的训练数据有限,过拟合是一个真正的问题。为了解决这个问题,我们需要确保我们的模型能够在各种真实世界场景中表现良好。 为了解决这个问题,我们采用了数据增强技术。我们创建了四个不同的测试集:一个用于原始训练数据,另外三个用于在不同上下文中进行测试。在基于内容的测试集中,我们改变了整个句子,而在基于上下文的测试集中保留了音乐领域的实体。使用未见过的数据集进行测试也对验证模型的鲁棒性起到了至关重要的作用。 然而,我们的旅程并不没有遇到与内存相关的障碍。使用流行的自然语言处理库spaCy训练模型会引发内存问题。最初,由于内存限制,我们仅为评估分配了2%的训练数据。将评估集扩大到5%仍然导致内存问题。为了解决这个问题,我们将训练集分成了四部分并分别进行训练,既解决了内存问题又保持了模型的准确性。 模型性能和准确性 我们的目标是确保模型在实际场景中表现良好,并且我们所达到的准确性不仅仅是由于过拟合造成的。由于在广泛的数据上进行了预训练的大型语言模型RoBERTa,训练过程非常快速。spaCy进一步帮助我们找到了适合我们任务的最佳模型。 结果是令人鼓舞的,准确率始终超过95%。我们使用了各种测试集进行了测试,包括基于上下文和基于内容的数据集,结果准确率令人印象深刻。这证实了尽管训练数据有限,模型学习能力快速。…

Leave a Comment

使用Transformer检测图像中的表格行和列

介绍 您是否曾经处理过非结构化数据,并考虑过一种方式来检测文档中表格的存在?以帮助您快速处理您的文档?在本文中,我们将不仅了解如何检测表格的存在,还将通过使用Transformer模型来识别这些表格的结构。这将由两个不同的模型实现。一个用于文档中的表格检测,另一个用于结构识别,可以识别表格中的行和列。 学习目标 如何在图像中检测表格的行和列? Table Transformers和Detection Transformer(DETR)的介绍 PubTables-1M数据集概述 如何使用Table Transformer进行推理 文档、文章和PDF文件是有价值的信息来源,通常包含传递关键数据的表格。从这些表格中高效提取信息可能会面临不同格式和表示之间的挑战。手动复制或重新创建这些表格可能耗时且繁琐。在PubTables-1M数据集上训练的Table Transformers解决了表格检测、结构识别和功能分析的问题。 本文是Data Science Blogathon的一部分。 如何实现的? 这是通过一种名为Table Transformer的Transformer模型实现的。它使用了一个名为PubTables-1M的大型注释数据集,可以检测文章中的文档或图像。该数据集包含约一百万个参数,并采用了一些措施来给模型带来最新的感觉。通过解决不完美注释、空间对齐问题和表格结构一致性等挑战,实现了高效性。与该模型一起发布的研究论文利用了Detection Transformer(DETR)模型,用于联合建模表格结构识别(TSR)和功能分析(FA)。因此,DETR模型是Table Transformer运行的骨干,由微软研究开发。让我们更详细地了解一下DETR。 DEtection TRansformer(DETR) 如前所述,DETR是DEtection TRansformer的缩写,包括使用编码器-解码器Transformer的卷积骨干,例如ResNet架构。这使得它有潜力进行目标检测任务。DETR提供了一种不需要复杂模型(如Faster R-CNN和Mask…

Leave a Comment

大型语言模型微调的全面指南

介绍 在过去几年中,自然语言处理(NLP)领域发生了一场令人瞩目的变革,这完全归功于大型语言模型的出现。这些复杂的模型为各种应用打开了大门,从语言翻译到情感分析,甚至智能聊天机器人的创建。 但它们的多功能性使得这些模型与众不同;将它们微调以应对特定任务和领域已经成为标准做法,释放出它们的真正潜力,将其性能提升到新的高度。在这本全面的指南中,我们将深入探讨大型语言模型的微调世界,涵盖从基础知识到高级知识的一切。 学习目标 了解微调的概念和将大型语言模型调整适应特定任务的重要性。 探索多任务、指令微调和参数高效微调等高级微调技术。 获得实际应用的实用知识,微调的语言模型在其中革新行业。 了解大型语言模型微调的逐步过程。 实施完善的微调机制。 了解标准微调和指令微调之间的区别。 本文作为数据科学博文的一部分发表。 理解预训练语言模型 预训练语言模型是在互联网上获取的大量文本数据上进行训练的大型神经网络。训练过程包括预测给定句子或序列中缺失的单词或令牌,从而使模型对语法、上下文和语义有深刻的理解。通过处理数十亿个句子,这些模型可以把握语言的复杂性,有效捕捉其细微差别。 流行的预训练语言模型示例包括BERT(双向编码器表示转换)、GPT-3(生成式预训练转换器3)、RoBERTa(经过优化的鲁棒BERT预训练方法)等等。这些模型以其出色的性能在文本生成、情感分类和语言理解等任务上表现出色。 让我们详细讨论其中一个语言模型。 GPT-3 GPT-3(生成式预训练转换器3)是一种突破性的语言模型架构,改变了自然语言生成和理解。Transformer模型是GPT-3架构的基础,它包含了多个参数,以产生出色的性能。 GPT-3的架构 GPT-3由一系列Transformer编码器层组成。每个层由多头自注意力机制和前馈神经网络组成。前馈网络处理和转换编码表示,注意力机制使模型能够识别单词之间的依赖关系和关联。 GPT-3的主要创新是其巨大的规模,它拥有令人惊叹的1750亿个参数,使其能够捕捉到大量的语言知识。 代码实现 您可以使用OpenAI API与GPT-3模型进行交互。以下是使用GPT-3进行文本生成的示例。 import openai…

Leave a Comment

用双向LSTM掌握下一个单词预测:全面指南

介绍 识别下一个单词是下一个单词预测的任务,也被称为语言建模。自然语言处理的基准任务之一就是语言建模。在其最基本的形式中,它涉及根据给定的一串词语选择最有可能出现的下一个单词。语言建模在许多不同领域都有各种各样的应用。 学习目标 认识统计分析、机器学习和数据科学中使用的各种模型背后的思想和原则。 学习如何创建预测模型,包括回归、分类、聚类等,以根据数据生成精确的预测和类型。 了解过拟合和欠拟合的原理,并学习如何使用准确率、精确度、召回率等指标评估模型性能。 学习如何预处理数据并确定建模的相关特征。 学习如何使用网格搜索和交叉验证调整超参数并优化模型。 本文作为数据科学博客马拉松的一部分发布。 语言建模的应用 以下是一些值得注意的语言建模应用: 手机键盘文本推荐 智能手机键盘上的一个功能称为手机键盘文本推荐,或者预测文本或自动建议,在您输入时建议单词或短语。它旨在加快输入速度,减少错误,并提供更准确和与上下文相关的建议。 也可阅读:构建基于内容的推荐系统 谷歌搜索自动完成 每次我们使用谷歌等搜索引擎搜索任何内容时,我们会得到许多想法,随着我们不断添加短语,推荐会变得越来越好,与当前搜索更相关。那么,这是如何实现的呢? 自然语言处理(NLP)技术使其成为可能。在这里,我们将使用自然语言处理(NLP)来创建一个预测模型,利用双向LSTM(长短期记忆)模型来预测句子的剩余部分。 了解更多:什么是LSTM?长短期记忆简介 导入必要的库和包 最好导入构建下一个单词预测模型所需的必要库和包。下面是你通常需要的一些库的示例: import pandas as pd import…

Leave a Comment

head()和tail()函数的解释及示例和代码

头部和尾部函数是数据分析和编程中的重要工具,特别是在Python流行的pandas包的背景下。本文深入探讨了头部和尾部函数,以Python、R和其他相关编程语言的示例代码为例,展示了它们在不同数据分析场景中的重要性。 什么是head()函数? head()函数主要用于查看数据集的前几行。它帮助用户快速了解数据及其结构。分析人员可以通过显示初始记录来检查列名、数据类型和数据本身。head()函数在许多编程语言中都可用,包括Python和R。 什么是tail()函数? tail()函数提供了数据集最后几行的快速查看,就像head()函数一样。当处理大型数据集时,它特别有帮助,因为它使用户能够检查数据是否完整,并在数据集的末尾发现任何趋势或异常值。 Python中head()和tail()的示例(使用Pandas) import pandas as pd # 创建一个示例DataFrame data = {‘Name’: [‘Ankit’, ‘Bhavya’, ‘Charvi’, ‘Diya’, ‘Eesha’],         ‘Age’: [25, 30, 22, 28,…

Leave a Comment

变分自编码器概述

介绍 变分自编码器(VAEs)是显式设计用于捕捉给定数据集的潜在概率分布并生成新样本的生成模型。它们采用了一个由编码器-解码器结构组成的架构。编码器将输入数据转换为潜在形式,解码器旨在基于这个潜在表示重构原始数据。VAE被编程为最小化原始数据和重构数据之间的差异,使其能够理解底层数据分布并生成符合相同分布的新样本。 VAEs的一个显著优势是它们能够生成类似于训练数据的新数据样本。由于VAE的潜在空间是连续的,解码器可以生成在训练数据点之间平滑插值的新数据点。VAEs在密度估计和文本生成等各个领域都有应用。 本文是数据科学博文马拉松的一部分。 变分自编码器的架构 一个VAE通常由两个主要组件组成:一个编码器连接和一个解码器连接。编码器网络将输入数据转换为低维的“秘密空间”,通常被称为“秘密代码”。 可以研究使用各种神经网络拓扑结构(如全连接或卷积神经网络)来实现编码器网络。所选择的架构基于数据的特性。编码器网络生成必要的参数,如高斯分布的均值和方差,以用于采样和生成潜在代码。 同样,研究人员可以使用各种类型的神经网络构建解码器网络,其目标是从提供的潜在代码中重构原始数据。 变分自编码器的架构示例:fen VAE包括一个编码器网络,将输入数据映射到潜在代码,并且包括一个解码器网络,通过将潜在代码转换回重构数据来进行逆操作。通过进行这个训练过程,VAE学习到了一个优化的潜在表示,捕捉了数据的基本特征,从而实现精确的重构。 关于正则化的直觉 除了架构方面,研究人员还对潜在代码应用正则化,使其成为VAE的重要元素。这种正则化通过鼓励潜在代码的平滑分布而防止过拟合,而不仅仅是简单地记住训练数据。 正则化不仅有助于生成在训练数据点之间平滑插值的新数据样本,还有助于VAE生成类似于训练数据的新数据。此外,这种正则化还防止解码器网络完美地重构输入数据,促进学习更一般的数据表示,增强VAE生成多样化数据样本的能力。 在VAE中,研究人员通过将Kullback-Leibler(KL)散度项纳入损失函数来数学表达正则化。编码器网络生成高斯分布的参数(如均值和对数方差),用于对潜在代码进行采样。VAE的损失函数包括计算学习到的潜在变量的分布与先验分布(正态分布)之间的KL散度。研究人员将KL散度项纳入损失函数中,以鼓励潜在变量具有与先验分布类似的分布。 KL散度的公式如下: KL(q(z∣x)∣∣p(z)) = E[log q(z∣x) − log p(z)] 总之,VAE中的正则化起着增强模型生成新数据样本的能力并减轻过拟合训练数据风险的关键作用。 VAE的数学细节 概率框架和假设…

Leave a Comment

探索用人工智能生成音乐的世界

介绍 利用人工智能生成音乐已经成为一个有价值的领域,改变了音乐的创作和欣赏方式。本项目介绍了在音乐创作中应用人工智能的概念和目的。我们旨在探索使用人工智能算法生成音乐的过程以及其潜力。 我们的项目专注于理解和实施促进音乐创作的人工智能技术。人工智能可以通过学习大量音乐作品,并利用特殊的数学规则来理解音乐中的模式、节奏和结构,然后根据所学习的内容创作新的曲调。通过对音乐数据进行训练,我们使人工智能系统能够学习和产生新的原创作品。我们还将研究人工智能生成音乐的最新发展,特别是Meta的MusicGen。 通过探索人工智能在音乐生成中的范围,本项目旨在激发音乐家、研究人员和音乐爱好者探索这一创新技术的可能性。让我们一起踏上这段音乐之旅,揭示人工智能可以生成的旋律。 学习目标 通过参与这个项目,我们将获得新的技术技能,并了解如何实施人工智能算法来构建创新应用程序。在项目结束时,我们将: 了解人工智能在音乐创作中的应用。我们将学习训练人工智能模型进行音乐创作的基本概念和技术。 学习如何收集和准备与音乐模型训练相关的音乐数据。我们将探索如何收集.mp3文件并将其转换为MIDI文件,利用诸如Spotify的Basic Pitch之类的工具。 我们还将了解构建用于音乐生成的人工智能模型的步骤。此外,我们将学习适用于该任务的模型架构及其相关性,并亲自体验训练模型的过程,包括确定epoch数和批量大小。 我们将花时间探索评估训练模型性能的方法。然后,我们将学习如何分析指标并评估生成的音乐作品的质量,以衡量模型的效果并找出改进的方向。 最后,我们将探索使用训练好的人工智能模型生成新的音乐作品的过程。 本文作为数据科学博文发布。 项目描述 本项目旨在探索利用人工智能生成音乐的有趣领域。我们旨在研究人工智能技术如何创造独特的音乐作品。通过利用机器学习算法,我们的目标是训练一个能够在各种音乐流派中产生旋律和和声的人工智能模型。 该项目的重点是收集各种类型的音乐数据,特别是.mp3文件,这些文件将成为训练人工智能模型的基础。这些文件将经过预处理,使用专门的工具(如Spotify的Basic Pitch)将它们转换为MIDI格式。这种转换是必要的,因为MIDI文件提供了人工智能模型可以轻松解释的音乐元素的结构化表示。 随后的阶段涉及构建专门用于音乐生成的人工智能模型。使用准备好的MIDI数据训练模型,旨在捕捉音乐中的潜在模式和结构。 进行性能评估以评估模型的熟练程度。这将涉及生成音乐样本并评估其质量,以优化流程并提高模型产生创意音乐的能力。 本项目的最终成果将是使用训练好的人工智能模型生成原创作品的能力。这些作品可以通过后期处理技术进一步改进,以丰富其音乐性和连贯性。 问题陈述 本项目致力于解决音乐创作工具的可访问性有限的问题。传统的音乐创作方法可能繁琐,并需要专业知识。此外,产生新颖和独特的音乐概念可能是一个巨大的挑战。本项目的目标是利用人工智能来克服这些障碍,为音乐创作提供无缝解决方案,即使对于非音乐家也是如此。通过开发一个能够作曲旋律和和声的人工智能模型,本项目旨在民主化音乐创作过程,让音乐家、爱好者和新手释放他们的创造潜力,并轻松创作独特的作品。 音乐生成使用人工智能的简要历史 人工智能在创作音乐方面的故事可以追溯到20世纪50年代,最早是由计算机帮助创作的Illiac Suite…

Leave a Comment

数据分析的前10个SQL项目

介绍 SQL(结构化查询语言)是一种强大的数据分析和处理工具,在数据科学中发挥着至关重要的作用,可以从大型数据集中提取有价值的见解。为了提高SQL技能并获得实践经验,真实世界的项目是必不可少的。本文介绍2023年数据分析的前十个SQL项目,为您提供在各个领域中锻炼SQL能力和有效解决实际问题的多样化机会。 前十个SQL项目 无论您是初学者还是经验丰富的数据专业人士,这些项目都将使您能够完善SQL专业知识,并对数据分析做出有意义的贡献。 销售分析 客户细分 欺诈检测 库存管理 网站分析 社交媒体分析 电影推荐 医疗保健分析 情感分析 图书馆管理系统 销售分析 目标 这个数据挖掘项目的主要目标是对销售数据进行深入分析,获取有价值的销售业绩见解,识别出现的趋势,并制定基于数据的业务策略,以改善决策能力。 数据集概述和数据预处理 数据集包含交易信息、产品详细信息和客户人口统计学数据,对于销售分析至关重要。在进行分析之前,需要进行数据预处理以确保数据质量。这包括处理缺失值、去除重复项和格式化数据以保持一致性。 用于分析的SQL查询 使用各种SQL查询可以有效进行销售分析。这些查询涉及销售数据的聚合、计算关键绩效指标(如收入、利润和销售增长)以及根据时间、地区或产品类别对数据进行分组。这些查询进一步促进了对销售模式、客户细分以及识别最佳销售产品或地区的探索。 关键见解和发现 销售分析为决策提供了有价值的可操作见解。它揭示了随时间变化的销售业绩趋势,找出了畅销产品或类别,并突出了表现不佳的地区。分析客户人口统计学数据有助于识别个性化营销策略的目标细分。此外,分析可能揭示季节性效应、销售与外部因素之间的相关性以及交叉销售和提升销售的机会。凭借这些见解,企业可以做出明智的决策,优化运营,推动增长和成功。 点击此处查看源代码。 客户细分…

Leave a Comment

H1B签证是否基于数据分析的见解获得批准?

介绍 H1B签证计划为全球技术人才提供了进入美国的机会。每年,成千上万的才华横溢的专业人士通过该计划进入美国,为各个行业做出贡献,推动创新。让我们深入H1B签证数据的世界,了解外国劳工认证办公室(OFLC)提供的有趣信息和背后的故事。本文揭示了H1B签证数据分析的结果,我们从中获得了洞见和有趣的故事。通过特征工程,我们从外部来源增强了数据集的信息。通过精细的数据整理,我们仔细组织数据,以便更好地理解和分析数据。最后,数据可视化揭示了关于2014至2016年间美国熟练工人的有趣趋势和未被告知的见解。 探索并分析外国劳工认证办公室(OFLC)提供的H1B签证数据,并了解其在吸引熟练外国劳工来美国方面的重要性。 了解数据预处理的过程,包括数据清洗、特征工程和数据转换技术。 检查和分析H1B签证申请的接受和拒绝率,这可能会影响这些率。 熟悉数据可视化技术,以有效地呈现和传达发现结果。 注:🔗 您可以在Kaggle上找到这个分析的完整代码和数据集,以探索分析背后的整个过程:H1B Analysis on Kaggle 本文是数据科学博客马拉松的一部分。 什么是H1B签证? H1B签证计划是美国移民政策的关键组成部分,旨在吸引高技能外籍工人填补各个行业的专业职位。它解决了技能短缺问题,促进了创新,推动了经济增长。 要获得H1B签证,必须按照以下关键步骤: 找到一家愿意为该外籍工人赞助签证的美国雇主。 雇主代表外籍工人向美国移民局(USCIS)提交H1B申请。 该申请受到年度配额的限制,如果申请数量超过可用名额,则可能通过抽签程序。 如果被选中,USCIS将审核申请的合格性和符合性。 如果获得批准,外籍工人可以获得H1B签证,并开始在美国为雇主工作。 该过程涉及满足特定要求,例如持有学士学位或同等学历,并处理其他考虑因素,例如最低工资确定和雇主-雇员关系的文件记录。遵守和准备充分对于成功的H1B签证申请至关重要。 数据集 外国劳工认证办公室(OFLC)提供的2014年、2015年和2016年组合数据集包括案件编号、案件状态、雇主名称、雇主城市、雇主州、职位名称、SOC代码、SOC名称、工资率、工资单位、最低工资、最低工资来源、年份等列。 这些列提供了关于H1B签证申请的基本信息,包括案件细节、雇主信息、职位名称、工资率和最低工资数据。 使用OFLC官方网站https://www.foreignlaborcert.doleta.gov/performancedata.cfm上提供的数据集和数据布局,以完全了解所有可用列及其描述。…

Leave a Comment

使用机器学习和Flask部署的农作物产量预测

介绍 农作物产量预测是农业行业中必不可少的预测性分析技术。它是一种农业实践,可以帮助农民和农业企业预测特定季节的农作物产量,以便更好地种植和收获。预测性分析是农业行业中可用于农作物产量预测、风险缓解、降低肥料成本等方面的有力工具。使用机器学习和 Flask 部署的农作物产量预测将对天气条件、土壤质量、果实结数、果实质量等进行分析。 Unsplash 学习目标 我们将简要介绍使用授粉模拟建模来预测农作物产量的端到端项目。 我们将遵循数据科学项目生命周期的每个步骤,包括数据探索、预处理、建模、评估和部署。 最后,我们将使用 Flask API 在名为 render 的云服务平台上部署模型。 因此,让我们开始这个激动人心的实际问题声明。 本文是数据科学博客马拉松的一部分。 项目描述 用于此项目的数据集是使用空间显式模拟计算模型生成的,分析和研究影响野生蓝莓预测的各种因素,包括: 植物空间排列 异交和自交 蜜蜂物种组成 天气条件(单独和组合)对野生蓝莓的授粉效率和产量的影响。 该模拟模型已通过在过去30年中在美国缅因州和加拿大海岸收集的田野观察和实验数据进行验证,并现在是一个有用的工具,用于假设测试和野生蓝莓产量预测的估计。这个模拟数据为研究人员提供了从实地收集的实际数据,用于各种农作物产量预测实验,同时为开发人员和数据科学家提供了构建用于农作物产量预测的真实世界机器学习模型的数据。 模拟野生蓝莓田 什么是授粉模拟模型?…

Leave a Comment