Press "Enter" to skip to content

Tag: ChatGPT

如何使用ChatGPT在Google Sheets中

介绍 Google Sheets是一款广泛使用且知名的电子表格应用程序。多年来,它已经确立了自身作为数据管理和分析的关键资源。然而,对于没有扎实的数据分析或编程基础的人来说,充分发挥Google Sheets的潜力可能会是一项具有挑战性的任务。在这里,ChatGPT for Google Sheets通过提供解决方案来改变体验。 人工智能(AI)正在不断重新定义我们在不断发展的技术世界中与数字VoAGI互动的方式。使用ChatGPT for Google Sheets扩展了用户的选择,并使数据相关任务变得比以往任何时候都更容易、更合乎逻辑和更有效。你只需要一个OpenAI账户和Google Sheets即可发挥AI的力量! 使用ChatGPT附加组件 GPT-3可以解释高级提示和命令,因此将GPT-3与Google Sheets和Google Script集成在一起并不构成挑战。对此函数的调用创建了一个定制的操作,该操作在调用时向OpenAI API发出请求,并附带相关提示。 设置ChatGPT集成 ChatGPT API是一个扩展,它允许你将ChatGPT的功能整合到你的程序、商品或服务中。你可以利用ChatGPT的潜力,为请求提供类似人类的答案,并进行非正式的对话。 它可以处理大量数据并与多个系统和平台无缝集成。此外,它使程序员能够根据特定需求定制框架,从而提高所产生内容的准确性和适用性。 它使用自然语言处理(NLP)理解和生成类似人类的回应。这非常适用于构建AI聊天机器人、虚拟助手和其他交互式服务。 在Google Sheets中启用API访问 GPT…

Leave a Comment

“人工智能的不断增长可能导致全球水资源短缺”

人工智能是技术革命的推动力量,悄然耗尽我们的水资源。包括OpenAI的ChatGPT在内的先进AI系统对能量的渴望导致了水消耗的惊人增加。在本文中,我们将深入探讨人工智能对环境的无止境能量需求以及微软和谷歌等科技巨头为缓解这一日益关注的问题所做的努力。 还可阅读:NVIDIA的人工智能模型拯救地球,NASA提供资金支持 人工智能的能源需求 人工智能,尤其是ChatGPT等计算密集型模型,需要大量的处理能力,通常存储在庞大的数据中心中。这些数据中心不仅对能源需求巨大,而且对水资源依赖性较高。 微软和谷歌的环境努力 像微软和谷歌这样的领先科技巨头正在采取措施应对人工智能对环境的影响。它们是确保负责任的资源消耗的更广泛行业努力的一部分。然而,随着科技行业的扩张,专家们对其负面环境影响的担忧日益加剧。 不断增加的用水量 人工智能革命进一步提高了人工智能对水的需求。根据微软最新的环境报告,他们的全球用水量从2021年增长了34%,达到近17亿加仑,相当于2500个奥运大小的游泳池。谷歌作为另一个深度参与人工智能研究的科技巨头,其用水量增加了20%,在2022年达到了56亿加仑。这一大幅增加归因于该公司不断扩大的人工智能工作。 还可阅读:人工智能模型的环境成本:碳排放和用水量 ChatGPT的用水量和OpenAI的地方影响 最近的报告显示,像ChatGPT这样的人工智能系统每次用户提出5到50个提示或问题时,会消耗大约500毫升的水。考虑到全球范围内聊天机器人使用的指数增长,这相当于一个巨大的水足迹,引起了专家和环保人士的警惕。 由加利福尼亚州的工程师开发的ChatGPT依赖于爱荷华州的数据中心,该地区使用了Raccoon和Des Moines河的水。这说明了人工智能对当地水资源的深远影响。虽然OpenAI将其数据中心的位置保密,但受影响地区的居民感受到了后果。得梅因水务公司报告称,自2007年以来住宅用水费率增加了近80%,城市居民每1000加仑水费为5.19美元。 人工智能与加密货币挖掘 人工智能的用水量与加密货币挖掘的用电量存在相似之处。虽然与人工智能不同,但加密货币挖掘在资源消耗方面面临类似的挑战。例如,比特币挖掘的能源消耗量与阿根廷的全部用电量相当。 科技巨头的改变承诺 微软的承诺: 微软正积极寻求在租用场地推动透明度和效率。他们的目标是到2030年实现100%无碳能源,并力争成为一个负碳、正水、零废弃物的公司。 谷歌的可持续目标: 谷歌也制定了雄心勃勃的目标,计划到2030年在其运营和价值链上实现净零排放。这包括减少2022年产生的1020万吨二氧化碳。谷歌还强调,由于效率措施的实施,人工智能的能源需求增长速度比预期要慢。 还可阅读:NVIDIA的人工智能拯救地球免受气候变化的影响 我们的观点 尽管科技公司正在采取措施缓解人工智能对环境的影响,但威胁仍然存在。随着人工智能能力的扩大,科技公司必须不断追求效率提升,采用可再生能源,探索替代的冷却技术,并加强资源使用的透明度。只有通过负责任的管理,人工智能的能源需求才能得到可持续满足,确保与地球的和谐共存。

Leave a Comment

“文本转语音 – 训练您的大型语言模型”

介绍 想象一个世界,人工智能可以接受音乐家的语音指令,并将其转化为美妙的、旋律优美的吉他声音。这不是科幻小说,而是源自于开源社区“AI之声”的突破性研究。在本文中,我们将探讨在生成式人工智能吉他声音的“文本到声音”领域创建大型语言模型(LLM)的旅程。我们将讨论所面临的挑战以及为实现这个愿景所开发的创新解决方案。 学习目标: 了解在“文本到声音”领域创建大型语言模型的挑战和创新解决方案。 探索在开发基于语音指令生成吉他声音的人工智能模型时面临的主要挑战。 深入了解使用ChatGPT和QLoRA模型等人工智能进展改进生成式人工智能的未来方法。 问题陈述:音乐家的意图识别 问题是使人工智能能够根据音乐家的语音指令生成吉他声音。例如,当音乐家说“给我你明亮的吉他声音”时,生成式人工智能模型应该理解意图并产生明亮的吉他声音。这需要上下文和领域特定的理解,因为像“明亮”这样的词在一般语言中有不同的含义,但在音乐领域代表特定的音色质量。 数据集挑战和解决方案 训练大型语言模型的第一步是拥有与模型的输入和期望输出相匹配的数据集。在确定正确的数据集以训练我们的LLM以理解音乐家的指令并以正确的吉他声音作出回应时,我们遇到了几个问题。以下是我们如何处理这些问题。 挑战1:吉他音乐领域数据集准备 一个重大的挑战是缺乏特定于吉他音乐的可用数据集。为了克服这个问题,团队不得不创建自己的数据集。这个数据集需要包括音乐家之间讨论吉他声音的对话,以提供上下文。他们利用了Reddit的讨论等资源,但发现需要扩大这个数据池。他们采用了数据增强、使用BiLSTM深度学习模型和生成基于上下文的增强数据集等技术。 挑战2:数据注释和创建标记数据集 第二个挑战是对数据进行注释以创建一个带有标签的数据集。像ChatGPT这样的大型语言模型通常在通用数据集上进行训练,需要对特定领域的任务进行微调。例如,“明亮”可以指光线或音乐质量。团队使用了一种名为Doccano的注释工具,教会模型正确的上下文。音乐家为乐器和音色质量给数据打上了标签。由于需要领域专业知识,注释工作具有挑战性,但团队通过应用主动学习方法对数据进行自动标注来部分解决了这个问题。 挑战3:建模作为机器学习任务-命名实体识别(NER)方法 确定正确的建模方法是另一个障碍。它应该被视为识别主题还是实体?团队确定了命名实体识别(NER)方法,因为它使模型能够识别和提取与音乐相关的实体。他们采用了spaCy的自然语言处理流水线,利用了HuggingFace的RoBERTa等转换器模型。这种方法使生成式人工智能能够在音乐领域中识别像“明亮”和“吉他”这样的词的上下文,而不是它们的一般含义。 模型训练的挑战和解决方案 模型训练对于开发有效和准确的人工智能和机器学习模型至关重要。然而,它通常会带来一些挑战。在我们的项目背景下,当我们训练我们的转换器模型时,我们遇到了一些独特的挑战,我们不得不找到创新的解决方案来克服这些挑战。 过拟合和内存问题 在模型训练过程中,我们遇到的主要挑战之一是过拟合。过拟合是指模型过于专注于拟合训练数据,导致在未见或真实世界数据上表现不佳。由于我们的训练数据有限,过拟合是一个真正的问题。为了解决这个问题,我们需要确保我们的模型能够在各种真实世界场景中表现良好。 为了解决这个问题,我们采用了数据增强技术。我们创建了四个不同的测试集:一个用于原始训练数据,另外三个用于在不同上下文中进行测试。在基于内容的测试集中,我们改变了整个句子,而在基于上下文的测试集中保留了音乐领域的实体。使用未见过的数据集进行测试也对验证模型的鲁棒性起到了至关重要的作用。 然而,我们的旅程并不没有遇到与内存相关的障碍。使用流行的自然语言处理库spaCy训练模型会引发内存问题。最初,由于内存限制,我们仅为评估分配了2%的训练数据。将评估集扩大到5%仍然导致内存问题。为了解决这个问题,我们将训练集分成了四部分并分别进行训练,既解决了内存问题又保持了模型的准确性。 模型性能和准确性 我们的目标是确保模型在实际场景中表现良好,并且我们所达到的准确性不仅仅是由于过拟合造成的。由于在广泛的数据上进行了预训练的大型语言模型RoBERTa,训练过程非常快速。spaCy进一步帮助我们找到了适合我们任务的最佳模型。 结果是令人鼓舞的,准确率始终超过95%。我们使用了各种测试集进行了测试,包括基于上下文和基于内容的数据集,结果准确率令人印象深刻。这证实了尽管训练数据有限,模型学习能力快速。…

Leave a Comment

2023年9月社交媒体最佳ChatGPT提示

在社交媒体的世界中导航可能会让人感到不知所措,尤其是在你想要实现特定的商业目标时无论你是初创公司、中型企业还是大型企业,拥有一个聪明的社交媒体策略是必不可少的ChatGPT不仅可以帮助你自动化任务,还可以创建与你品牌相关的引人入胜、富有洞察力的内容

Leave a Comment

Llama 2:深入探究ChatGPT的开源挑战者

“能够进行复杂推理任务的大型语言模型(LLMs)在编程和创意写作等专业领域显示出潜力然而,LLMs的世界并不仅仅是一个即插即用的天堂;在可用性、安全性和计算需求方面存在一些挑战在本文中,我们将深入探讨Llama 2的能力,同时提供一个[…]”

Leave a Comment

OpenAI的ChatGPT企业版专注于安全性、可扩展性和定制化

OpenAI的ChatGPT在商业界引起了轰动,而最近推出的ChatGPT Enterprise也证明了它的重要性日益突出ChatGPT Enterprise拥有企业级安全性、无限的GPT-4访问、更长的上下文窗口和一系列自定义选项等增强功能,承诺成为现代化的一体化AI助手

Leave a Comment