Press "Enter" to skip to content

Tag: Big Data

在云计算领域,Microsoft Azure发挥着巨大的推动作用作为一种跨平台、可扩展且安全可靠的云服务,Azure为企业和个人提供了无限的可能性 Azure的优势之一在于其强大的计算能力无论是数据分析、人工智能还是大规模的应用开发,Azure的计算资源可以满足不同的需求同时,Azure的全球数据中心覆盖范围广泛,为用户提供了高速、高效的云服务

发现微软Azure对现代企业和技术环境的影响探索关键功能,优势和使用案例

Leave a Comment

2023年的15个人工智能(AI)和机器学习相关的Subreddit社区

在快节奏的人工智能(AI)和机器学习领域,及时了解最新的趋势、突破和讨论至关重要。作为互联网的首页,Reddit成为专家和爱好者的中心。这是我们精心挑选的2023年关注的顶级AI和机器学习相关subreddit列表,让您始终保持关注。 r/MachineLearning 这个subreddit专注于机器学习,定期发布技术和引人入胜的帖子和讨论。对于这个拥有超过250万成员的群体来说,有几个基本的行为规则。这是机器学习爱好者必加的群组。 r/artificial r/artificial是最大的专门讨论人工智能或AI相关问题的subreddit。拥有超过16.7万成员,人们可以在这里找到最新的新闻,实际应用中的AI示例,以及那些从事AI工作或研究的人们的讨论和问题。AI是一个广阔的领域,涉及许多学科和子领域。许多这些子领域也有专门的subreddit。r/artificial涵盖了所有这些内容。它是一个平台,供任何对AI以任何形式进行智能和尊重的讨论感兴趣的人。 r/ArtificialInteligence r/ArtificialInteligence是最流行的AI subreddit之一,您不需要选择内容标签。这个subreddit拥有超过8.8万成员。您可以加入这个subreddit,了解最新的AI动态。 r/Machinelearningnews r/machinelearningnews是一个机器学习爱好者/研究者/记者/作者的社区,他们分享有关AI应用的有趣新闻和文章。因为这些内容每天都会发布,并且经过高度审核以避免任何垃圾信息,所以您不会错过任何关于ML/AI/CV/NLP领域的更新。 r/Automate 这个subreddit有超过7.5万成员参与讨论和帖子,专注于自动化。在r/Automate subreddit上可以找到关于自动化、增材制造、机器人、AI以及其他我们开发的技术的讨论。 r/singularity 这个subreddit致力于对一个假设时期的深思研究,即人工智能发展到超越人类的卓越智能程度,从而从根本上改变文明。拥有超过16.1万成员,这个subreddit上的帖子质量和相关性都很高。它涵盖了技术奇点和相关主题的所有方面,比如人工智能(AI)、人类增强等。 r/agi 这个subreddit拥有约1.25万成员,专注于人工通用智能。人工通用智能(AGI)是指能够完成任何人类可以完成的智力工作的机器。这里的帖子定期发布,内容丰富,讨论富有创意。 r/compsci 任何对计算机科学家们发现的信息感到着迷并愿意分享和讨论的人都应该访问r/compsci subreddit。其中包含了许多关于人工智能的帖子。作为成员,有几个简单的规则需要遵守。这个subreddit拥有超过210万成员。 r/AIethics 伦理在AI中是基础。r/AIethics上有关于如何使用和创造各种AI工具的最新内容。规则很简单。它拥有超过3.2k成员。这个subreddit讨论了人工智能代理应该如何行为以及我们应该如何对待它们。 r/cogsci 尽管认知科学是一个庞大的领域,但这个subreddit的帖子在某种程度上与从科学角度研究心智有关,同时也涉及最新的人工智能。它涵盖了跨学科研究心智和智能的领域,包括哲学、心理学、人工智能、神经科学、语言学和人类学。作为用户,有几个广泛的行为准则需要遵守,它拥有超过10.7万成员。 r/computervision…

Leave a Comment

AI和内容创作:数字创新的新视角

人工智能(AI)的出现已经改变了许多领域,提供了一些曾经只存在于科幻小说中的非凡能力人工智能正在取得重大进展的一个领域就是内容创作领域利用先进的算法,现在可以以前所未有的速度产生独特、引人入胜和个性化的内容让我们来探索一下… 人工智能和内容创作:数字创新的新视角 阅读更多 »

Leave a Comment

“基于人工智能的停车管理系统如何提高效率”

当你在工作时停放你的汽车,或者当你去商店时进入停车场,你是否知道有一个完整的系统来确保你找到停车位,你的车子是安全的,你能够再次离开停车场?事实上,在工作中的系统……AI基于的停车管理系统如何提高效率阅读更多 »

Leave a Comment

70%的开发者今天拥抱人工智能:深入研究大型语言模型、LangChain和向量数据库在当前技术领域的崛起

人工智能具有无限的可能性,这在其引入每个人的新产品和发展中显而易见。随着OpenAI开发的最新聊天机器人ChatGPT的发布,由于其GPT的变压器架构,AI领域已经席卷全球。从深度学习、自然语言处理(NLP)和自然语言理解(NLU)到计算机视觉,AI正将每个人推向一个拥有无尽创新的未来。几乎每个行业都在利用AI的潜力并进行革命性的改变。特别是在大规模语言模型(LLMs),LangChain和向量数据库等领域的卓越技术进步,是这一显著发展的原因。 大规模语言模型 大规模语言模型(LLMs)的发展代表了人工智能的一大步进。这些基于深度学习的模型在处理和理解自然语言时表现出令人印象深刻的准确性和流畅性。LLMs通过从各种来源(包括书籍、期刊、网页和其他文本资源)获取大量文本数据进行训练。它们通过学习语言来获取语言结构、模式和语义链接,从而帮助它们理解人类交流的复杂性。 LLMs的基本架构通常涉及具有多层的深度神经网络。根据训练数据中发现的模式和连接,该网络分析输入文本并生成预测。为了减少模型预期输出和预期输出之间的差异,模型的参数在训练阶段进行调整。LLM在训练过程中消耗文本数据,并试图根据上下文预测下一个单词或一系列单词。 LLMs的应用 回答问题:LLMs擅长回答问题,并通过搜索大量的文本语料库(如书籍、论文或网站)来提供精确而简洁的回答。 内容生成:LLMs在涉及内容生成的活动中证明了其有用性。它们能够生成语法正确、连贯的文章、博客条目和其他书面内容。 文本摘要:LLMs在文本摘要方面表现出色,能够在将冗长的文本压缩为更短、更易消化的摘要时保留重要信息。 聊天机器人:LLMs经常被用于创建聊天机器人和使用对话式AI的系统。它们使得这些系统能够用正常语言与用户进行交互,理解他们的问题并适当地回答,并在整个交互过程中保持上下文。 语言翻译:LLMs能够准确地在不同语言之间进行文本翻译,克服语言障碍,促进成功的交流。 训练LLMs的步骤 训练LLMs的初始阶段是编制一个庞大的文本数据集,模型将使用该数据集来发现语言模式和结构。 一旦收集到数据集,就需要进行预处理,以便为训练做准备。为此,必须通过删除任何不必要或冗余的条目来清理数据。 选择适当的模型架构对于训练LLMs至关重要。基于变压器的架构已经显示出在处理和生成自然语言方面非常高效,包括GPT模型。 使用反向传播等深度学习方法调整模型的参数来训练LLMs,并提高其准确性。模型在训练过程中处理输入数据并基于识别出的模式生成预测。 在初始训练之后,LLMs将进一步在特定任务或领域上进行微调,以提高其在这些领域的性能。 为了评估经过训练的LLMs的性能,使用多种指标(包括困惑度和准确性)来评估模型的性能。 经过训练和评估后,LLMs将在实际应用中的生产环境中使用于实际应用。 一些著名的语言模型 GPT(Generative Pre-trained Transformer)是OpenAI的GPT模型系列的重要成员,也是知名的ChatGPT的底层模型。它是一个仅解码器的单向自回归模型,通过根据先前生成的单词预测下一个单词来生成文本。GPT拥有1750亿个参数,广泛用于内容生成、问题回答等方面。 BERT – 双向Transformer编码器表示(BERT)是最早的基于Transformer的自监督语言模型之一。它是一个强大的模型,用于理解和处理自然语言,具有3.4亿个参数。…

Leave a Comment

从纸张到像素:数字传真如何转变大数据管理

现代世界见证了信息管理方式的显著转变曾经充斥着每个办公室的一堆纸张如今已被优美的数字格式所取代这种变化令人难以置信地改革了大数据的处理方式但您是否曾想过那款较为普通的传真机如何……从纸质到像素:数字传真如何转变大数据管理 阅读全文 »

Leave a Comment